# Physical and cut-off effects of heavy charm-like sea quarks

Francesco Knechtli

Bergische Universität Wuppertal

with R. Sommer, B. Leder, J. Finkenrath, A. Athenodorou, M. Marinkovic

24th June, 2014

Lattice 2014, Columbia University

Results

#### Motivation

#### Charm effects

- Estimate physical effects of the charm quark in QCD
- $\blacktriangleright$  At large M effective theory in powers of 1/M
- $\blacktriangleright~M_{\rm c}\simeq 12 M_{\rm s}$ : cut-off effects from charm can be large
- ► Here: study these effects for N<sub>f</sub> = 2 O(a) improved Wilson fermions at a mass below and close to charm
- Can  $1/M^2$  effects be measured?



Results

## Effective field theory

### Expansion in $(E/M)^n$ : EFT for $E \ll M$

- Only virtual effects of quark with mass M No states with explicit heavy quark (the HQET part)
- Effective Lagrangian (here for  $N_{\rm f} \rightarrow N_{\rm f} 1$ )

$$\begin{aligned} \mathscr{L}_{\text{QCD}}^{(N_{\text{f}}-1)} &= \mathscr{L}_{\text{QCD}}^{(N_{\text{f}}-1)}(\psi_{\text{light}}, \bar{\psi}_{\text{light}}, A_{\mu}; \tilde{g}_{0}(M), m(M)) \\ &+ \frac{1}{M} \mathscr{L}_{\text{Pauli}} + \frac{1}{M^{2}} \mathscr{L}_{6} \\ \mathscr{L}_{\text{Pauli}} &= \frac{g^{2l}(M)}{M} \bar{\psi}_{\text{light}} \sigma_{\mu\nu} F_{\mu\nu} m_{\text{light}} \psi_{\text{light}} \\ &+ \mathsf{NP} \times \bar{\psi}_{\text{light}} \sigma_{\mu\nu} F_{\mu\nu} \psi_{\text{light}} \end{aligned}$$

NP expected to be:  ${
m NP}=M^{-\gamma}\,,\;\gamma>0$  (  $\gamma\geq 1$  ?)

• Coupling  $\tilde{g}_0^2(M)$  or  $\bar{g}^2(M)$  drops out for ratios  $R(M) = \frac{t_0}{w_0^2}, \ \frac{r_1}{r_0}, \ldots$ 



Pick observables with a strong dependence on  $N_{\rm f}$ Wilson flow:  $t_0$  [Lüscher, arXiv:1006.4518] and  $w_0$  [Borsanyi et al., arXiv:1203.4469]

$$t_0$$
 :  $\mathcal{E}(t_0) = 0.3$ ,  $\mathcal{E}(t) = t^2 \langle E(x,t) \rangle$   
 $w_0$  :  $w_0^2 \mathcal{E}'(w_0^2) = 0.3$ 

Static force:  $r_0$  [Sommer, hep-lat/9310022] and  $r_1$  [Bernard et al., hep-lat/0002028]

$$r^2 F(r)|_{r=r_c} = c, \quad r_0 \equiv r_{1.65}$$

RGI mass, fixed in  $\,\mathrm{MeV}$  using  $F_\mathrm{K}$ 

$$M \equiv M_{\rm RGI} = \frac{M}{\overline{m}(\mu)} \frac{Z_{\rm A}(1 + \tilde{b}_{\rm A} am)}{Z_{\rm P}(\mu)(1 + \tilde{b}_{\rm P} am)} m \,, \qquad m \equiv$$



 $m_{\rm PCAC}$ 

| Ensembles |  |  |
|-----------|--|--|

| $\beta$ | $a  [ \mathrm{fm}]$ | $T \times L^3$    | $M \; [\mathrm{MeV}]$ | kMDU |
|---------|---------------------|-------------------|-----------------------|------|
| 5.3     | 0.0658(10)          | $64 \times 32^3$  | 200(4)                | 1    |
| 5.3     |                     | $64 \times 32^3$  | 410(8)                | 2    |
| 5.5     | 0.0486(7)           | $120 \times 32^3$ | 200(4)                | 8    |
| 5.5     |                     | $120 \times 32^3$ | 407(7)                | 8    |
| 5.5     |                     | $96 \times 48^3$  | 780(14)               | 4    |
| 5.7     | 0.038               | $192 \times 48^3$ | 389(8)                | 4    |
| 5.7     |                     | $192 \times 48^3$ | 745(16)               | 4    |
|         |                     |                   |                       |      |

(a from  $F_{
m K}$  [ALPHA, arXiv:1205.5380] and PT for eta=5.7)



#### Autocorrelation times



Virotta, arXiv:1009:5228]

| Ratios |  |  |
|--------|--|--|

#### Global fits of cut-off effects

Global fits to ratios  $R=t_0/w_0^2\,,\;r_1/r_0\,,\;r_0^2/t_0$ 

continued lines,  $a^2$  effects at M = 0 fixed from [Sommer, arXiv:1401.3270]:  $s \approx 2$  for  $R = t_0/w_0^2$ ,  $s \approx 15$  for  $R = r_0^2/t_0$ 

$$R = R(M) + s\frac{a^2}{8t_0} \left(1 + k_1M + k_2M^2\right)$$

dashed lines:

$$R = R(M) + k_0 \frac{a^2}{8t_0} + k_1 \frac{a^2}{8t_0} M$$

(continuum values for  $N_{\rm f}=$  0,  $N_{\rm f}=$  2 at physical point from M. Bruno)



| $R = t_0 / w_0^2$ |  |  |
|-------------------|--|--|



Cancellation between cut-off effects, at a = 0.049 fm, M = 0.8 GeV: term without M: 3.3%; with M: -2.4%





| $R = r_1 / r_0$ |  |  |
|-----------------|--|--|





| $R = r_0^2 / t_0$ |  |  |
|-------------------|--|--|



(coefficient of  $M^2$  effects  $k_2 = 0$ )



Introduction

Simulations

Results

Conclusions and outlook

#### The M - dependence



# Conclusions and outlook

| Decoupling rescaled | to $N_{\rm f}=1 \rightarrow 0$ |
|---------------------|--------------------------------|
| relative effects ·  |                                |

$$\frac{1}{N_{\rm f}} \frac{\mathcal{O}(M) - \mathcal{O}(\infty)}{\mathcal{O}(\infty)} \qquad N_{\rm f} = 2$$

| R                | $M \rightarrow$ | $M_{\rm c} = 1.6 {\rm GeV}$ | $0.8{ m GeV}$ | $0.4{ m GeV}$ | $0.2{ m GeV}$ | 0    |
|------------------|-----------------|-----------------------------|---------------|---------------|---------------|------|
| $\sqrt{t_0}/w_0$ |                 | 0.14 - 0.3%                 | 0.62(19)%     | 1.23(12)%     | 2.6(2)%       | 5.4% |
| $r_{1}/r_{0}$    |                 | 0 - 1%                      | 0.3(1.1)%     | 1.8(5)%       | 2.9(8)%       | ≈4%  |
| $r_0/\sqrt{t_0}$ |                 | 0 - 1%                      | 0.1(7)%       | 0.7(6)%       | 1.7(6)%       | 3%   |

Range at  $M_{\rm c}$  from two estimates:

- scaling with  $1/M^2$  (behavior for large M)

- scaling with 1/M (observed between  $M = 0.4 \,\text{GeV}$  and 0.8 GeV)

 $(M_{\rm c} \text{ taken from [Rolf and Sint, hep-ph/0209255]})$ 



# Conclusions and outlook

Relevance for decoupling of charm in QCD

Our numbers provide a rough estimate for charm effects in low energy observables in 2 + 1 + 1 simulations.

Put differently: tiny effects are being missed in 2+1 simulations (at low energies).

Low energy: up to  $r_1^{-1}$  was investigated.

No qualitative difference between decoupling  $2 \rightarrow 0$ and decoupling  $2+1+1 \rightarrow 2+1$  is expected

Pauli term  $\psi_{\text{light}} \sigma_{\mu\nu} F_{\mu\nu} \psi_{\text{light}}$ does not appear in PT (chiral symmetry) and is therefore nonperturbatively suppressed:  $M^{-1-\gamma}, \gamma > 0$ 

