Understanding localisation in QCD through an Ising-Anderson model

Matteo Giordano, Tamás G. Kovács and Ferenc Pittler

Institute for Nuclear Research (ATOMKI), Debrecen

Lattice 2014 New York, 25th June 2014

Localisation in the Dirac Spectrum

Low-lying modes of the Dirac operator are localised above T_c

[García-García, Osborn (2007), Kovács (2010), Kovács, Pittler (2010), Kovács, Pittler (2012)]

- Eigenmodes localised/delocalised for $\lambda < \lambda_c(T) / \lambda > \lambda_c(T)$
- Anderson-type phase transition in the spectrum at λ_c , same universality class of the 3D unitary Anderson model [MG, Kovács, Pittler (2014)]

Anderson Transition in 3D

Tight-binding Hamiltonian for "dirty" conductors [Anderson (1958)]

$$H_{\vec{x}\vec{y}} = \varepsilon_{\vec{x}}\delta_{\vec{x}\vec{y}} + \sum_{\mu} (\delta_{\vec{x}+\hat{\mu}\vec{y}} + \delta_{\vec{x}-\hat{\mu}\vec{y}})$$

Random on-site potential $\varepsilon_{\vec{x}} \in \left[-\frac{W}{2}, \frac{W}{2}\right]$ ($W \sim$ amount of disorder) plus hopping

- eigenstates localised for
 E > E_c(W) (mobility edge)
- second-order phase transition with divergent $\xi \sim |E E_c|^{-\nu}$

Anderson Transition in 3D

Tight-binding Hamiltonian for "dirty" conductors [Anderson (1958)]

$$H_{\vec{x}\vec{y}} = \varepsilon_{\vec{x}}\delta_{\vec{x}\vec{y}} + \sum_{\mu} (\delta_{\vec{x}+\hat{\mu}\vec{y}} + \delta_{\vec{x}-\hat{\mu}\vec{y}})e^{i\phi_{\vec{x}\vec{y}}} \qquad \phi_{\vec{y}\vec{x}} = -\phi_{\vec{x}\vec{y}}$$

Random on-site potential $\varepsilon_{\vec{x}} \in \left[-\frac{W}{2}, \frac{W}{2}\right]$ ($W \sim$ amount of disorder) plus hopping

In a magnetic field \rightarrow random phases, unitary class

- eigenstates localised for
 E > E_c(W) (mobility edge)
- second-order phase transition with divergent $\xi \sim |E E_c|^{-\nu}$

$$\nu_{\rm UAM} = 1.43(4)$$

[Slevin, Ohtsuki (1999)]

	Anderson model	QCD at $T > T_c$
dimensionality	3D	4D
mobility edge	energy $E_c(W)$	Dirac eigenvalue $\lambda_c(T)$
amount of disorder	width W	temperature T
type of disorder	diagonal (sites) uncorrelated	off-diagonal (links) correlated (short range)
critical exponent	$ u_{ m UAM}{=}1.43(4)$ [Slevin, Ohtsuki (1999)]	$ u_{ m QCD}=1.43(6)$ [MG, Kovács, Pittler (2014)]

	Anderson model	QCD at $T > T_c$
dimensionality	3D	4D
mobility edge	energy $E_c(W)$	Dirac eigenvalue $\lambda_c(T)$
amount of disorder	width W	temperature T
type of disorder	diagonal (sites) uncorrelated	off-diagonal (links) correlated (short range)
critical exponent	$ u_{ m UAM}{=}1.43(4)$ [Slevin, Ohtsuki (1999)]	$ u_{ m QCD}=1.43(6)$ [MG, Kovács, Pittler (2014)]

QCD above T_c is effectively a 3D model: time slices strongly correlated, quark eigenfunctions look qualitatively the same at all t

Temporal gauge: $U_4 = 1$ except at the temporal boundary \Rightarrow wave functions obey effective boundary conditions involving the Polyakov loop

$$\psi(N_T, \vec{x}) = -P(\vec{x})\psi(0, \vec{x})$$

Correlated time slices \Rightarrow effective, *x*-dependent boundary conditions will affect the behaviour at *x* for all *t*

 $P(\vec{x})$ fluctuates in space, providing effective 3D diagonal disorder

Localisation and Polyakov Loops

Simplified setting: SU(2), constant U_4 , $U_j = 1$ Temporal diagonal gauge, $P = \text{diag}(e^{i\varphi}, e^{-i\varphi})$

 $onumber \psi = i\lambda\psi \qquad \psi(t,\vec{x}) \propto e^{i\omega t + i\vec{p}\cdot\vec{x}} \qquad \lambda^2 = \sin^2\omega + \sum_{j=1}^3 \sin^2 p_j$

 $rac{L}{2\pi}
ho_j = 0, 1, \dots, L-1$ to fulfill spatial bc $\omega(arphi) = rac{1}{N_T}(\pi \pm arphi \mod 2\pi) = aT(\pi \pm arphi \mod 2\pi)$

to fulfill temporal bc (effective Matsubara frequencies)

Above $T_c P(\vec{x})$ gets ordered along 1 with "islands" of "wrong" $P(\vec{x}) \neq 1$

- ω(0) = πaT provides an effective gap in the spectrum
- "wrong" P(x) allows for smaller λ ⇒ localising "trap" for eigenmodes

[Bruckmann, Kovács, Schierenberg (2011)]

Effective 3D Model

It should be possible to understand the qualitative features of the Dirac spectrum and eigenfunctions in QCD using a genuinely 3D model

Off-diagonal disorder less effective in producing localisation: $\vec{D} \rightarrow \vec{\partial}$, colour components decouple (changes the symmetry class)

Diagonal disorder $\mathcal{N}_{\vec{x}}$:

- $\bullet\,$ not uncorrelated, should be governed by Polyakov-loop-like dynamics $\sim\,$ spin models in the ordered phase
- phase of P(x) enters the effective boundary conditions
 ⇒ continuous spin
- $\mathcal{N}_{\vec{x}}$ should produce an effective gap in the spectrum

Effective 3D Model

It should be possible to understand the qualitative features of the Dirac spectrum and eigenfunctions in QCD using a genuinely 3D model

Off-diagonal disorder less effective in producing localisation: $\vec{D} \rightarrow \vec{\partial}$, colour components decouple (changes the symmetry class)

Diagonal disorder $\mathcal{N}_{\vec{x}}$:

- $\bullet\,$ not uncorrelated, should be governed by Polyakov-loop-like dynamics $\sim\,$ spin models in the ordered phase
- phase of $P(\vec{x})$ enters the effective boundary conditions \Rightarrow continuous spin
- $\mathcal{N}_{\vec{x}}$ should produce an effective gap in the spectrum

Enough to have a spin model which displays an ordered phase: Ising model with continuous spin

$$H_{\vec{x}\vec{y}} = \gamma^4 \Lambda \frac{1+s_{\vec{x}}}{2} \delta_{\vec{x}\vec{y}} + i\vec{\gamma} \cdot \vec{\partial}_{\vec{x}\vec{y}} \qquad s_{\vec{x}} \in [-1,1]$$

Ordered phase: "sea" of $s_{\vec{x}}=1$ with "islands" of $s_{\vec{x}} \neq 1$ (magnetic field = 0⁺)

- $\frac{1+s_{\vec{x}}}{2}$: 1 for aligned spins, 0 for anti-aligned \approx effective spectral gap
- A: spin-fermion coupling \approx Matsubara frequency (size of the gap)
- ordering of the spin configuration governed by $\beta_{\rm Ising}$

Symmetry class: orthogonal (L even) or symplectic (L odd) Test of viability of the sea/islands explanation

Spectral Density

Low modes have small spectral density, which rapidly increases

Symmetry $\lambda \to -\lambda$ on average

Sharp gap in the spectrum

Participation Ratio

Modes change from localised to delocalised moving up in the spectrum

Matteo Giordano (ATOMKI)

Spectral Statistics

Spectral statistics changes from Poisson to RMT (orthogonal)

$$I_{\lambda} = \int_{0}^{\overline{s}} ds \, p_{\lambda}(s) \qquad s_{i} = rac{\lambda_{i+1} - \lambda_{i}}{\langle \lambda_{i+1} - \lambda_{i}
angle} \qquad \overline{s} \simeq 0.5$$

Critical $\lambda_c \approx$ effective gap

- Spatial fluctuations of the Polyakov loop provide a mechanism for localisation in QCD above T_c
- Preliminary results with the 3D Ising-Anderson model support the proposed mechanism

Open issues:

- Larger volumes, check if there is a true phase transition
- Tune the underlying spin model to study systems with larger correlation length

- A.M. García-García and J.C. Osborn, Phys. Rev. D 75 (2007) 034503
- T.G. Kovács, Phys. Rev. Lett. 104 (2010) 031601
- T.G. Kovács and F. Pittler, Phys. Rev. Lett. 105 (2010) 192001
- T.G. Kovács and F. Pittler, Phys. Rev. D 86 (2012) 114515
- P.W. Anderson, Phys. Rev. 109 (1958) 1492
- M. Giordano, T. G. Kovács and F. Pittler, Phys. Rev. Lett. 112 (2014) 102002
- K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82 (1999) 382
- F. Bruckmann, T.G. Kovács and S. Schierenberg, Phys. Rev. D 84 (2011) 034505