Thursday 26 $^{\text {th }}$ June, Lattice 2014

An Improved Study of the Excited Radiative Decay $\Upsilon(2 S) \rightarrow \eta_{b}(1 S) \gamma$ Using Lattice NRQCD

C. Hughes, R. Dowdall, G. Von Hippel, R. Horgan, M. Wingate

Motivation : $\Upsilon(2 S) \rightarrow \eta_{b}(1 S) \gamma$

- Study spin singlets: η_{b}

Motivation : $\Upsilon(2 S) \rightarrow \eta_{b}(1, S) \gamma$

- Study spin singlets: η_{b}
- Insight into heavy quark bound states in QCD

```
Motivation : \(\Upsilon(2 S) \rightarrow \eta_{b}(1 S) \gamma\)
```

- Study spin singlets: η_{b}
- Insight into heavy quark bound states in QCD
- Laboratory to test relativistic effects: NRQCD =? Experiment

Decay Rate: $\Upsilon(2 S) \rightarrow \eta_{b}(1, S) \gamma$

Decay Rate: $\Upsilon(2 S) \rightarrow \eta_{b}(1 S) \gamma$

$$
\begin{gathered}
\left\langle\eta_{b}\left(p_{i}\right)\right| J^{\mu}(0)\left|\Upsilon\left(p_{f}, s_{\Upsilon}\right)\right\rangle=\frac{2 \mathbf{V}\left(\mathbf{Q}^{2}\right)}{M_{\Upsilon}+M_{\eta_{b}}} \varepsilon^{\mu \alpha \beta \tau} p_{i, \alpha} p_{f, \beta} \epsilon_{\Upsilon, \tau}\left(p_{f}, s \Upsilon\right) \\
\Gamma_{\Upsilon \rightarrow \eta_{b} \gamma}=\alpha_{Q E D} e_{q}^{2} \frac{16}{3} \frac{\left|\mathbf{q}_{\gamma}\right|^{3}}{\left(M_{\Upsilon}+M_{\eta_{b}}\right)^{2}}\left|\mathbf{V}^{\text {lat }}\left(\mathbf{Q}^{2}=0\right)\right|^{2}
\end{gathered}
$$

Currents and Power Counting

$$
\begin{aligned}
& \left|\mathbf{q}_{\gamma}\right| \sim m v^{2}, v^{2} \sim 0.1 \\
& M 4: \frac{\omega_{4}}{2 M} \psi_{b}^{\dagger} \sigma \cdot \mathbf{B}^{\mathbf{Q E D}} \psi_{b} \sim\left|\mathbf{q}_{\gamma}\right|^{2} \sim v^{4}
\end{aligned}
$$

Currents and Power Counting

$$
\begin{aligned}
& \left|\mathbf{q}_{\gamma}\right| \sim m v^{2}, v^{2} \sim 0.1 \\
& M 4: \frac{\omega_{4}}{2 M} \psi_{b}^{\dagger} \sigma \cdot \mathbf{B}^{\mathbf{Q E D}} \psi_{b} \sim\left|\mathbf{q}_{\gamma}\right|^{2} \sim v^{4} \\
& M 6: \frac{\omega_{7}}{2 M^{3}} \psi_{b}^{\dagger}\left\{\mathbf{D}^{2}, \sigma \cdot \mathbf{B}^{\mathbf{Q E D}}\right\} \psi_{b} \sim v^{2}\left|\mathbf{q}_{\gamma}\right|^{2} \sim v^{6} \\
& E 4: \frac{i \omega_{3}}{8 M^{2}} \psi_{b}^{\dagger} \sigma \cdot\left[\mathbf{D} \times, \mathbf{E}^{\mathbf{Q E D}}\right] \psi_{b} \sim\left|\mathbf{q}_{\gamma}\right|^{3} \sim v^{6} \\
& E 6: \frac{3 i \omega_{8}}{64 M^{4}} \psi_{b}^{\dagger} \sigma \cdot\left\{\mathbf{D}^{2},\left[\mathbf{D} \times, \mathbf{E}^{\mathbf{Q E D}}\right]\right\} \psi_{b} \sim v^{2}\left|\mathbf{q}_{\gamma}\right|^{3} \sim v^{8}
\end{aligned}
$$

NRQCD Action

$$
\begin{aligned}
a H= & a H_{0}+a \delta H_{v^{4}}+a \delta H_{v^{6}}+a \delta H_{4 q} ; \\
a H_{0}= & -\frac{\Delta^{(2)}}{2 a m_{b}}, \\
a \delta H_{v^{4}}= & -c_{1} \frac{\left(\Delta^{(2)}\right)^{2}}{8\left(a m_{b}\right)^{3}}+c_{2} \frac{i}{8\left(a m_{b}\right)^{2}}(\nabla \cdot \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \cdot \nabla) \\
& -c_{3} \frac{1}{8\left(a m_{b}\right)^{2}} \sigma \cdot(\tilde{\nabla} \times \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \times \tilde{\nabla}) \\
& -c_{4} \frac{1}{2 a m_{b}} \sigma \cdot \tilde{\mathbf{B}}+c_{5} \frac{\Delta^{(4)}}{24 a m_{b}}-c_{6} \frac{\left(\Delta^{(2)}\right)^{2}}{16 n\left(a m_{b}\right)^{2}}, \\
a \delta H_{v^{6}}= & -c_{7} \frac{1}{8\left(a m_{b}\right)^{3}}\left\{\Delta^{(2)}, \sigma \cdot \tilde{\mathbf{B}}\right\} \\
& -c_{8} \frac{3 i}{64\left(a m_{b}\right)^{4}}\left\{\Delta^{(2)}, \sigma \cdot(\tilde{\nabla} \times \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \times \tilde{\nabla})\right\} \\
& +c_{9} \frac{1}{8\left(a m_{b}\right)^{3}} \sigma \cdot \tilde{\mathbf{E}} \times \tilde{\mathbf{E}}
\end{aligned}
$$

Power Counting

Power Counting

Currents and Power Counting

$$
\left|\mathbf{q}_{\gamma}\right| \sim m v^{2}, v^{2} \sim 0.1
$$

$$
M 4: \frac{\omega_{4}}{2 M} \psi_{b}^{\dagger} \sigma \cdot \mathbf{B}^{\mathbf{Q E D}} \psi_{b} \sim\left|\mathbf{q}_{\gamma}\right|^{2} \sim v^{4}
$$

This study finds: $\omega_{4} \approx 1.0$

Power Counting

Power Counting

Power Counting

Finally, we note that the large changes in the excited state decay amplitudes found in going from $\mathcal{O}\left(v^{4}\right)$ to $\mathcal{O}\left(v^{6}\right)$ NRQCD may suggest that it would be beneficial to avoid nonrelativistic approximations altogether.

Power Counting

Finally, we notedther changes in the excited state decay amplitydes found in going from $\mathcal{O}\left(v^{4}\right)$ to $\mathcal{O}\left(v^{6}\right)$ NRQCD may suggest that it would be beneficial to avoid nonrelativistic approximations altogether.

Potential Model

Going to a Potential model could prove potentially useful

Potential Model

$$
\begin{aligned}
& \Gamma_{\Upsilon \rightarrow \eta_{b} \gamma}=\alpha_{Q E D} e_{q}^{2} \frac{4}{3 m_{b}^{2}}\left|\mathbf{q}_{\gamma}\right|^{3}\left|\int r^{2} d r \phi_{\eta_{b}}^{*}(1 S) j_{0}\left(\frac{\left|\mathbf{q}_{\gamma}\right| r}{2}\right) \phi_{\Upsilon}(2 S)\right|^{2} \\
& V\left(Q^{2}\right)_{n m} \propto \int r^{2} d r \phi_{\eta_{b}}^{*}(m S) j_{0}\left(\frac{\left|\mathbf{q}_{\gamma}\right| r}{2}\right) \phi_{\Upsilon}(n S)
\end{aligned}
$$

Potential Model

$$
V\left(Q^{2}\right)_{n m} \propto \int r^{2} d r \phi_{\eta_{b}}^{*}(m S) j_{0}\left(\frac{|\mathbf{q}| r}{2}\right) \phi_{\Upsilon}(n S)
$$

- $V\left(Q^{2}\right)_{11}^{\mathrm{Hyd}} \propto\left(1+\frac{a_{0}^{2}|\mathbf{q}|^{2}}{16}\right)^{-2}$

$$
\xrightarrow{|\mathbf{q}| \rightarrow 0} 1
$$

$\cdot V\left(Q^{2}\right)_{21}^{\mathrm{Hyd}} \propto \underbrace{\frac{a_{0}^{2}|\mathbf{q}|^{2}}{16}}_{V^{2}}\left(1+\frac{a_{0}^{2}|\mathbf{q}|^{2}}{16}\right)^{-3} \quad \xrightarrow{|\mathbf{q}| \rightarrow 0} 0$

Potential Model

$$
V\left(Q^{2}\right)_{n m} \propto \int r^{2} d r \phi_{\eta_{b}}^{*}(m S) j_{0}\left(\frac{|\mathbf{q}| r}{2}\right) \phi_{\Upsilon}(n S)
$$

- $V\left(Q^{2}\right)_{11}^{\mathrm{Hyd}} \propto\left(1+\frac{a_{0}^{2}|\mathbf{q}|^{2}}{16}\right)^{-2}$

$$
\xrightarrow{|\mathrm{q}| \rightarrow 0} 1
$$

- $V\left(Q^{2}\right)_{21}^{\mathrm{Hyd}} \propto \frac{a_{0}^{2}|\mathbf{q}|^{2}}{16}\left(1+\frac{a_{0}^{2}|\mathbf{q}|^{2}}{16}\right)^{-3} \quad \stackrel{|\mathrm{q}| \rightarrow 0}{\longrightarrow} 0$

Conceres

Improved Lattice Calculation

R. Lewis, R. Woloshyn, 1207.3825 exploratory (this) study includes:

- One (three) gluon ensemble
- 192 (~1000) gauge fields and 16 (16) time sources
- No (Order alpha in v^4 and four quark) radiative corrections - N.B!!
- Off (On) -shell photon

Coulomb Gauge Fixed Ensembles

MILC Configurations ($n_{f}=2+1+1$ HISQ)

Set β	$a_{\Upsilon}(\mathrm{fm})$	$a m_{l}$	$a m_{s}$	$a m_{c}$	$L \times T$	$n_{\text {cfg }}$	
1	5.8	$0.1474(5)(14)(2)$	0.013	0.065	0.838	16×48	1020
2	6.0	$0.1219(2)(9)(2)$	0.0102	0.0509	0.635	24×64	1052
3	6.3	$0.0884(3)(5)(1)$	0.0074	0.037	0.440	32×96	1008

$m_{\pi}^{l a t} \approx 300 \mathrm{MeV}$

Results for Radiatively Improved $\mathcal{O}\left(v^{4}\right)$ Action with $\mathcal{O}\left(v^{6}\right)$ Corrections

Results for Radiatively Improved $\mathcal{O}\left(v^{4}\right)$ Action with $\mathcal{O}\left(v^{6}\right)$ Corrections

$$
V\left(Q^{2}\right)=\sum_{i}^{\text {currents }} V^{i}\left(Q^{2}\right) \text { with statistical errors only }
$$

Results for Radiatively Improved $\mathcal{O}\left(v^{4}\right)$ Action with $\mathcal{O}\left(v^{6}\right)$ Corrections

$$
V\left(Q^{2}\right)=\sum_{i}^{\text {currents }} V^{i}\left(Q^{2}\right) \text { with statistical errors only }
$$

Results for Radiatively Improved $\mathcal{O}\left(v^{4}\right)$ Action with $\mathcal{O}\left(v^{6}\right)$ Corrections

Results for Radiatively Improved $\mathcal{O}\left(v^{4}\right)$ Action with $\mathcal{O}\left(v^{6}\right)$ Corrections

Tree Level Current Operators

Summary and To Do

- L.O. current suppressed due to orthogonality of radial wavefunctions
- NRQCD works as expected
- This suppression results in sensitivity to:
- Relativistic corrections in current
- Relativistic corrections in action
- Radiative corrections in action
- Provides stringent test of NRQCD

Summary and To Do

- L.O. current suppressed due to orthogonality of radial wavefunctions
- NRQCD works as expected
- This suppression results in sensitivity to:
- Relativistic corrections in current
- Relativistic corrections in action
- Radiative corrections in action
- Provides stringent test of NRQCD
- Still to include four quark operators
- Then perform high statistic study with multiple lattice spacings

Summary and To Do

- L.O. current suppressed due to orthogonality of radial wavefunctions
- NRQCD works as expected
- This suppression results in sensitivity to:
- Relativistic corrections in current
- Relativistic corrections in action
- Radiative corrections in action
- Provides stringent test of NRQCD
- Still to include four quark operators

- Then perform high statistic study with multiple lattice spacings

Questions

C. Hughes

Questions

C. Hughes

20\% errors on w_3, w_7

Interaction Lagrangian

$$
\begin{aligned}
\mathcal{L}_{i n t} & =\frac{\omega_{4}}{2 M} \psi_{b}^{\dagger} \sigma \cdot \mathbf{B}^{\mathbf{Q E D}} \psi_{b} \\
& +\frac{\omega_{7}}{2 M^{3}} \psi_{b}^{\dagger}\left\{\mathbf{D}^{2}, \sigma \cdot \mathbf{B}^{\mathbf{Q E D}}\right\} \psi_{b} \\
& +\frac{i \omega_{3}}{8 M^{2}} \psi_{b}^{\dagger} \sigma \cdot\left[\mathbf{D} \times, \mathbf{E}^{\mathbf{Q E D}}\right] \psi_{b} \\
& +\frac{3 i \omega_{8}}{64 M^{4}} \psi_{b}^{\dagger} \sigma \cdot\left\{\mathbf{D}^{2},[\mathbf{D} \times, \mathbf{E}]\right\} \psi_{b} \\
& +[\text { Anti-Quark }] \\
& \text { where } i \mathbf{D}=i \nabla+g T^{a} \mathbf{A}_{a}^{\mathbf{Q C D}}+e e_{b} \mathbf{A}^{\mathbf{Q E D}}
\end{aligned}
$$

