The strange and charm quark contributions to the anomalous magnetic moment (g -2) of the muon from current-current correlators

Bipasha Chakraborty

University of Glasgow HPQCD Collaboration* *Christine Davies, *Gordon Donald, *Rachel Dowdall, *Pedro Gonçalves de Oliveira, *Jonna Koponen, *G. Peter Lepage, T. Teubner DIRAC

Lattice 2014 NY, June 23, 2014

Bipasha Chakraborty (University of Glasgow)

The s and c quark contributions to muon g-2

Lattice 2014, June 23rd 1 / 15

The magnetic moment of the muon

- Magnetic moment of a lepton: $\vec{\mu_l} = g_l \frac{Qe}{2m_l} \vec{s}$.
- Prediction from free Dirac theory : g = 2 for elementary fermions.
- In interacting quantum field theory: g gets corrections.
- The fundamental vector interaction of the fermion with an external EM field:

$$\gamma_{\mu}
ightarrow \mathsf{\Gamma}_{\mu}(q)=(\gamma_{\mu}\mathsf{F}_{1}(q^{2})+rac{i\sigma^{\mu
u}}{2m}q_{
u}\mathsf{F}_{2}(q^{2})).$$

Definition: Anomalous magnetic moment of muon: F₂(0) = g-2/2 ≡ a_μ.
 aSM_μ = a^{QED}_μ + a^{EW}_μ + a^{had}_μ.

(T. Blum et.al., arXiv:1301.2607)

Hadronic Vacuum Polarization (HVP)

• g-2 discrepancy of 3.6σ between SM and experiment (Brookhaven E821):

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 25(9) \times 10^{-10}.$$

- An exciting indication of new virtual particles ???
- Fermilab E989 goal to reduce experimental error to one-fourth.
- The current theoretical uncertainty dominated by that from the lowest order HVP contribution.

- HVP contribution from dispersion relation + cross section for e⁺e[−] (and τ) → hadrons ~700 x 10⁻¹⁰ with 1% error (K. Hagiwara *et al.*,J.Phys. G38, 085003(2011)).
- Our aim : To achieve precision at 1% level using first principle lattice QCD calculations.

Bipasha Chakraborty (University of Glasgow)

Our method for calculating HVP from full lattice QCD (B. Chakraborty *et al.*, Phys. Rev. D 89, 114501 (2014))

$$a^{(\mathrm{f})}_{\mu,\mathrm{HVP}} = rac{lpha}{\pi} \int dq^2 f(q^2) (4\pi lpha Q_{\mathrm{f}}^2) \hat{\Pi}_{\mathrm{f}}(q^2).$$

(T. Blum, '02)

- Renormalized vacuum polarization function: $\hat{\Pi}(q^2) \equiv \Pi(q^2) \Pi(0)$.
- Integrand peaks at $q^2 \sim O(m_{\mu}^2)$.
- Previous methods calculated $\hat{\Pi}(q^2)$ at larger q^2 and extrapolated to zero. Gives large uncertainties.

Our method:

- We reconstruct $\hat{\Pi}$ from its derivatives at $q^2 = 0$.
- Derivatives calculated from time-moments of local-local vector current correlator at zero spatial momentum.

Bipasha Chakraborty (University of Glasgow)

The s and c quark contributions to muon g-2

Our method for calculating HVP from full lattice QCD (B. Chakraborty *et al.*, Phys. Rev. D 89, 114501 (2014))

• For spatial currents at zero spatial momentum:

$$\Pi^{ii}(q^2) = q^2 \Pi(q^2) = a^4 \sum_t e^{iqt} \sum_{\vec{x}} \langle j^i(\vec{x},t) j^i(0) \rangle.$$

• Time moments of the correlator give the derivatives at $q^2 = 0$ of $\hat{\Pi}$.

$$\begin{array}{lcl} G_{2n} & \equiv & a^4 \sum_t \sum_{\vec{x}} t^{2n} Z_V^2 \langle j^i(\vec{x},t) j^i(0) \rangle \\ \\ & = & (-1)^n \left. \frac{\partial^{2n}}{\partial q^{2n}} q^2 \hat{\Pi}(q^2) \right|_{q^2=0}. \end{array}$$

• Defining $\hat{\Pi}(q^2) = \sum_{j=1}^{\infty} q^{2j} \Pi_j$ where $\Pi_j = (-1)^{j+1} \frac{G_{2j+2}}{(2j+2)!}$.

- Used 4th, 6th, 8th and 10th moments (i.e. j=1, 2, 3 and 4).
- Only quark-line-connected contributions to the lowest order HVP considered.

Our method for calculating HVP from full lattice QCD (B. Chakraborty *et al.*, Phys. Rev. D 89, 114501 (2014))

- $\hat{\Pi}(q^2)$ replaced with its [2,2] Padé approximant derived from Π_j .
- Using Padé approximants instead of Taylor approximation allows us to deal with high momenta.
- Precision of different Padé approximants tested by comparing with the exact one-loop perturbative results for *a_μ*.
- q^2 integral $\int dq^2 f(q^2) (4\pi \alpha Q_f^2) \hat{\Pi}_f(q^2)$ done numerically.

Lattice Configurations and Parameters in a^s_{μ} calculation

- 2+1+1 HISQ ensembles from MILC.
- $a \approx 0.15$ fm (very coarse), 0.12 fm (coarse), 0.09 fm (fine), determined using w_0 parameter (R.J.Dowdall *et al.*, Phys.Rev. D88 (2013) 074504).
- Large box size: 5.6 fm on the finest lattices.
- Light (u/d) sea quark mass: $m_s/5$ and the physical value $m_s/27.5$.
- Test volume effect : At $m_l = m_s/10$, three different volumes, $M_{\pi}L = 3.2$, 4.3 and 5.4 (set 4, 5, 7).
- HISQ valence s quark masses accurately tuned to $m_{\eta_s} = 688.5$ Mev (R.J.Dowdall *et al.*, Phys.Rev. D88 (2013) 074504).
- Test tuning effect: The valence s quark mass detuned by **5%** (set 6).

Set	$am_\ell^{ m sea}$	am_s^{sea}	$am_s^{ m val}$	$am_{\eta_s}^{ m val}$	$Z_{V,\overline{s}s}$	L/a×T/a	n _{cfg}
1	0.01300	0.0650	0.0705	0.54024(15)	0.9887(20)	16×48	1020
2	0.00235	0.0647	0.0678	0.526799(81)	0.9887(20)	32×48	1000
3	0.01020	0.0509	0.0541	0.43138(12)	0.9938(17)	24×64	526
4	0.00507	0.0507	0.0533	0.426369(58)	0.9938(17)	24×64	1019
5	0.00507	0.0507	0.0533	0.426369(58)	0.9938(17)	32×64	988
6	0.00507	0.0507	0.0507	0.41572(14)	0.9938(17)	32×64	300
7	0.00507	0.0507	0.0533	0.426369(58)	0.9938(17)	40×64	313
8	0.00184	0.0507	0.0527	0.423099(34)	0.9938(17)	48×64	1000
9	0.00740	0.0370	0.0376	0.313840(90)	0.9944(10)	32×48	504
10	0.00120	0.0363	0.0360	0.304800(40)	0.9944(10)	64×96	621

Non-perturbative renormalization ($Z_{V,\overline{s}s}$) of local vector current (B.Chakraborty *et al.*, PoS LATTICE2013, 309(2013))

- Local vector current not conserved in HISQ formalism.
- $Z_{V,\overline{ss}}$ calculated from the normalization at zero momentum transfer:

$$1 = Z_{V,\overline{q}q} \langle H_q | V_{qq} | H_q \rangle.$$

- Need to use unstaggered (clover) spectator quark in the three point function with same meson (η_s) at both ends.
- $Z_{V,\bar{s}s}$ calculated completely non-perturbatively with 0.1% precision on the finest $m_l = m_s/5$ lattice.

Our results: $m_{\phi} - m_{\eta_s}$ and f_{ϕ} extrapolations

- The mass and decay constant of the ϕ meson extracted from the two-point correlators precisely.
- Our results in the continuum limit agree with the experimental results.

Disconnected diagrams are not included, but small contribution expected.

Our results: Connected contributions to a^s_{μ} from full LQCD

Our final result for the connected contribution for *s* quarks to g - 2 is:

 $a_{\mu}^{s} = 53.41(59) \times 10^{-10}$ 55.054.5 $\iota^s_\mu \times 10^{10}$ 54.053.553.052.50.0050.0100.015 0.020 0.025 $a^2 \,({\rm fm}^2)$

• Blue points: $m_{\ell}^{\text{lat}} = m_s/5$, Red points: $m_{\ell}^{\text{lat}} = m_{\ell}^{\text{phys}}$.

- Precision obtained at 1.1% level.
- Lattice spacing error alone $\sim 1\%$, can be improved if better precision required.

The fit function

 We fit the results using [2, 2] Padé approximant from each configuration set to a function of the form

$$egin{aligned} \mathbf{a}_{\mu,\mathrm{lat}}^{\mathbf{s}} &= \mathbf{a}_{\mu}^{\mathbf{s}} imes \ & \left(1 + c_{\mathbf{a}^2} (\mathbf{a} \Lambda_{\mathrm{QCD}} / \pi)^2 + c_{\mathrm{sea}} \delta x_{\mathrm{sea}} + c_{\mathrm{val}} \delta x_{\mathrm{val}}
ight) \end{aligned}$$

where $\Lambda_{QCD}=0.5\,GeV$ and

$$\delta x_{\text{sea}} \equiv \sum_{q=u,d,s} \frac{m_q^{\text{sea}} - m_q^{\text{phys}}}{m_s^{\text{phys}}}$$
$$\delta x_s \equiv \frac{m_s^{\text{val}} - m_s^{\text{phys}}}{m_s^{\text{phys}}}.$$

Discretization effects are handled by c_{a²}.

Comparison of our result and ETMC result for a_{μ}^{s}

- Our result and result from ETM Collaboration, for a^s_μ, agree in the continuum limit.
- It seems we have much smaller discretization error using HISQ formalism.

Comparison of our results for a_u^s and a_u^c with other results

a^c_μ obtained from the previously calculated moments (G. Donald *et al.*, Phys. Rev. D86, 095401(2012)).

 $a_{\mu}^{c} = 14.42(39) \times 10^{-10}.$

 We could improve it by calculating Z_{V,cc} more precisely in the same way as before (will make no practical difference since error negligible).

$a_{\mu}^{s/c}$	Results from dispersion	Our results	ETMC (preliminary)
	+ experiment		results
a^s_μ	55.3(8)x10 ⁻¹⁰¹	53.41(59)x10 ⁻¹⁰	53(3)x10 ⁻¹⁰
a^c_μ	14.4(1)x10 ⁻¹⁰²	14.42(39)x10 ⁻¹⁰	14.1(6)x10 ⁻¹⁰

- ¹K. Hagiwara et al., J.Phys. G38, 085003(2011)
- ²S. Bodenstein et al., Phys. Rev. D85, 014029(2012)

Bipasha Chakraborty (University of Glasgow)

Preliminary results of the connected contribution to a_{μ}^{light}

- Signal-to-noise ratio at large t much worse.
- Calculated moments from the best fit parameters.

- 5-6% precision achieved using 1000 configs x 12 time sources for very coarse and 400 configs x 4 time sources for coarse (physical point).
- To achieve 1% precision, need 4 x time sources and up to 10 x configurations.
- Estimate of total $a_{\mu}^{HVP,LO} = a_{\mu}^{light} + a_{\mu}^{s} + a_{\mu}^{c} \sim 662(35) \times 10^{-10}$ (by averaging a_{μ}^{light} on physical point ensembles).

To summarize:

- 1% precision for the HVP contribution to a_{μ}^{s} achieved from LQCD.
- a_{μ}^{s} =53.41(59)×10⁻¹⁰ and a_{μ}^{c} =14.42(39)×10⁻¹⁰ from connected pieces.
- a_{μ}^{light} currently gives a 5-6% precision at the physical point.
- To achieve 1% precision: We can gain statistics from more time sources on existing configurations and using smeared sources.
- More configurations can also be made for very coarse and coarse relatively cheaply.
- Estimation of total: $a_{\mu}^{HVP,LO} \sim 662(35) \times 10^{-10}$.
- The disconnected contributions need to be included.

イロト イポト イラト イラト