The 32nd International Symposium on Lattice Field Theory, New York

News from hadron structure calculations with twisted mass fermions

Christian Wiese

with Constantia Alexandrou, Krzysztof Cichy, Vincent Drach, Elena Garcia Ramos, Kyriakos Hadjiyiannakou,

Karl Jansen, Bartosz Kostrzewa, Fernanda Steffens

NIC - DESY, Zeuthen

June 24th 2014

Outline

- introduction and current status of hadron structure computation within the ETMC
- a method to extract PDF from the lattice
- matching the quasi PDF with the physical one
- feasibility study and first results for the matrix elements
- future plans and challenges

News from hadron structure

- hadron structure is an essential part in understanding QCD
- many ongoing computations on this topic within the ETMC
- \rightarrow new results for g_a and $< x >_{u-d}$ of the proton at the physical point, cf. plenary talk by Martha Constantinou on Monday
- $\rightarrow\,$ study of $< x >_{u,d}$ of the pion, mentioned by Bartosz Kostrzewa in session 8B on Friday
- $\rightarrow\,$ ongoing computation for $< x >_g$ with currently perturbative renormalization of the singlet operator
- \rightarrow many more...

Introduction

- to understand the structure of a hadron it is important to know the distribution of its partons
- q(x) probability of finding a parton q with a momentum fraction x of the parent hadron
- deep inelastic scattering: important tool to access the structure of nucleons
- $\rightarrow\,$ measure cross section $\rightarrow\,$ extract structure functions
- ightarrow quark and gluon distributions via phenomenological fit
 - why PDF from the lattice
- $\rightarrow\,$ computation from first principles
- $\rightarrow\,$ perturbation theory only has access to small x region
- \rightarrow PDF fit depends on approach

PDF from lattice QCD

quark distributions via the light cone operator

$$q(x,\mu^2) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N(p) | \bar{\psi}(\xi^-) \gamma^+ L(\xi^-,0) \psi(0) | N(p) \rangle$$

 $\rightarrow~\xi^-=t-z,~L(\xi^-,0)$ Wilson line from ξ^- to 0

- $\rightarrow\,$ light cone dominated ($\xi^2\sim 0)$
- ightarrow not computable on Euclidean lattice ($\xi^2=t^2+ec x^2)$

we can compute moments of PDFs:

$$q_n = \int_0^1 dx \; x^{n-1} q(x) = \frac{1}{(p^+)^n} \langle N(p) | \bar{\psi}(0) \Gamma(i\overleftrightarrow{D}^+)^n \psi(0) | N(p) \rangle$$

- \rightarrow first moments possible
- \rightarrow higher moments difficult

PDF from lattice QCD II

new idea proposed by Ji, 2013 [arXiv:1305.1539]

 \rightarrow quasi distributions

$$\tilde{q}(x,\mu^2,p^z) = \frac{1}{2\pi} \int d\Delta z \; e^{-ixp^z \Delta z} \langle N(p^z) | \bar{\psi}(\Delta z) \gamma^z L(\Delta z,0) \psi(0) | N(p^z) \rangle$$

ightarrow purely spatial, can be simulated on the lattice

- $\rightarrow\,$ computable at finite momentum p^z
- ightarrow z can be any spatial direction
- $\rightarrow L(\Delta z, 0)$ is the Wilson-line form 0 to Δz in the z direction

Matching lattice results with the PDF

- quasi distribution is computed on the lattice at finite momentum
- $\rightarrow\,$ needs to be corrected

$$ilde{q}(x,\mu,p^z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{p^z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda^2_{QCD}}{(p^z)^2},rac{M^2_N}{(p^z)^2}
ight)$$

- we need large momenta in order to have a small correction
- Z can be expressed as a series in α_s
- \rightarrow needs to be computed perturbatively (cf. Xiong et al., 2013 [arXiv:1310.7471])

Road map

- computation of matrix elements on test ensemble
 - implementation of operator and verification of matrix elements
 - · algorithmic tests: stochastic vs. sequential method
 - test HYP smearing of Wilson line
- running high statistic production on large ensemble
- check for systematic effects
 - finite momentum effects
 - excited state effects
- non-perturbative renormalization
- compute quasi distribution from matrix elements
- matching to physical PDF
- use ensemble at the physical point

Study the feasibility: setup

- first computations were done on a test ensemble
- $ightarrow N_f = 2$ twisted mass fermions
- $\rightarrow\,$ generated by the ETM collaboration
- $ightarrow \, 16^3 imes 32$,
- ightarrow 540 measurements
- ightarrow ~approx 0.085 fm, $m_{PS}pprox 340~{
 m MeV}$
- \rightarrow Gauss smeared nucleon fields

Study: The matrix element we compute

- the following plots will show the matrix element of the operator $\langle N(p^z) | \bar{\psi}(\Delta z) \gamma^z L(\Delta z, 0) \psi(0) | N(p^z) \rangle$, for several values of Δz
- $\rightarrow\,$ note: boosted nucleon $\rightarrow\,$ momentum injection at the sink
- $\rightarrow\,$ first results are with momentum $1\rightarrow 6$ different possible momenta on the lattice

Results for matrix element

 similar to first results presented by Lin et al., 2014 [arXiv:1402.1462]

Study: sequential vs. stochastic

- sequential method
- + "exact method", i.e. no additional noise
- unflexible

- stochastic method
- + larger statistics with one set of inversions
- + access to all momenta
- stochastic noise

Study: sequential vs. stochastic II

- stochastic method is converging, for the same cost seems equal to sequential
- ightarrow but is more flexible
 - we tested both, fully and not diluted noise vectors: results are comparable

Study: HYP smearing

- HYP moves the signal up, but does not decrease the noise
- we will do non-perturbative renormalization of the matrix elements → we may not need HYP smearing

First matrix elements from a large volume

- next step: measurements on a production ensemble
- $ightarrow N_f = 2 + 1 + 1$ by ETMC, $32^3 \times 64$ (B55.32)
- ightarrow 240 measurements, (access to \sim 30000 forward propagators on \sim 4000 configurations)
- ightarrow eta = 1.95 (a pprox 0.082 fm), $m_{PS} pprox 372$ MeV
- \rightarrow no large cutoff or finite size effects

matrix element, stochastic method

Conclusion

- first steps in testing a new proposal which might enable us to extract the PDF from lattice QCD
- ongoing study with encouraging results for matrix elements
- studied two different methods: sequential and stochastic
- $\rightarrow\,$ to be flexible we will use the stochastic method in the future
 - employed several steps of HYP smearing
- $\rightarrow\,$ noise is not influenced

Future plans and challenges

- extensive study to have all the systematics under control
 - finite momentum effects: several momenta
 - excited state effects: vary source-sink separation
- non-perturbative renormalization
- compute quasi distribution from matrix elements
- matching to physical PDF
- PDF at physical quark mass: use $N_f=2$ twisted mass clover ensemble

Thanks

Thank you for your attention and future discussions.