Determination of c_{sw} in $N_f = 3 + 1$ Lattice QCD with massive Wilson fermions

Patrick Fritzsch, Rainer Sommer, Felix Stollenwerk, Ulli Wolff

Institut für Physik Humboldt-Universität zu Berlin Germany NIC DESY Zeuthen Germany

32nd International Symposium on Lattice Field Theory New York, June 26, 2014

Determination of c_{SW} in $N_f = 3 + 1$ LQCD

Symanzik Improvement of the Wilson Fermion action (N_f = 4, non-degenerate)

 O(a)-Improvement terms
 Massive scheme

 Determination of c_{sw} (N_f = 3 + 1)

 Line of constant physics
 Improvement condition

 First results

OLD T. U.N.L.

Symanzik Improvement

Wilson Fermion action

$$S_F = a^4 \sum_{\Lambda} \left(\mathcal{L}_F^0 + \mathcal{L}_F^M \right)$$

 $\mathcal{L}_{F}^{0} = \bar{\Psi} D_{W} \Psi \qquad \qquad \text{with} \qquad \qquad M = \text{diag}(\underbrace{m_{q,u}, m_{q,d}, m_{q,s}}_{m_{q,l}}, m_{q,c})$

Add higher dimension terms that respect symmetries of QCD

- e.g. $\bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi$
- e.g. $Tr[M]\bar{\Psi}M\Psi$

 $\hookrightarrow SU(4)_f$ symmetry broken for non-degenerate masses

on-shell improvement:

use equations of motion to reduce number of terms

Symanzik Improvement

Improved Wilson Fermion (& Gauge) action

$$S = a^4 \sum_{\Lambda} \left(\mathcal{L}^0_{F,I} + \mathcal{L}^M_{F,I} + \mathcal{L}^0_G + \mathcal{L}^M_{G,I} \right)$$

$$\begin{aligned} \mathcal{L}_{F,I}^{0} &= \bar{\Psi} D_{W} \Psi + a \bigg(c_{\rm sw}(g_{0}^{2}) \bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi \bigg) \\ \mathcal{L}_{F,I}^{M} &= \bar{\Psi} M \Psi + a \bigg(\sigma_{1}(g_{0}^{2}) \bar{\Psi} M^{2} \Psi + \\ \sigma_{2}(g_{0}^{2}) \operatorname{Tr}[M] \bar{\Psi} M \Psi + \\ \sigma_{3}(g_{0}^{2}) \operatorname{Tr}[M^{2}] \bar{\Psi} \Psi + \\ \sigma_{4}(g_{0}^{2}) (\operatorname{Tr}[M])^{2} \bar{\Psi} \Psi \bigg) \\ \mathcal{L}_{G,I}^{M} &= a \bigg(\sigma_{5}(g_{0}^{2}) \operatorname{Tr}[M] \operatorname{Tr}[F_{\mu\nu} F_{\mu\nu}] \bigg) \end{aligned}$$

[Bhattacharya et al. (2006)]

Massless scheme

- $O = \text{dimensionless observable in light sector (no <math>\Psi_c, \overline{\Psi}_c$)
- Dependence on mass of a light quark (l = u, d, s)

$$O(m_{q,l}) - O(0) \sim \frac{m_{q,l}}{\Lambda} + \mathcal{O}(a^2 m_{q,l}^2)$$
$$\approx \frac{m_{q,l}}{\Lambda}$$

mass effects can be computed and analyzed/extrapolated using ChPT
 small mass-dependent cutoff effects

Dependence on mass of a charm quark

$$O(m_{q,c}) - O(0) \sim ? + O(a^2 m_{q,c}^2)$$

- × mass effects can't be studied / are not of interest
- × large mass-dependent cutoff effects Problem 1

Massless scheme

OLDT-UNICE S

Example for renormalization

$$m_{R,i} = \lim_{a \to 0} Z_m(g_0^2, a\mu) \left[m_{q,i} + \left(r_m(g_0^2) - 1 \right) \underbrace{\text{Tr} [M]}_{\approx m_{q,c}} \right]$$

× small error in $r_m \Rightarrow$ huge error in $m_{R,i}$

Problem 2

Same problem exists for $\mathcal{O}(a)$ improvement:

$$\tilde{m}_{q,i} = m_{q,i} + \left[\sigma_3(g_0^2) + \sigma_4(g_0^2)\right] a m_{q,c}^2 + \dots$$

- × small error in $\sigma_i \Rightarrow$ large error in $\tilde{m}_{q,i}$
- x non-perturbative determination of many improvement coefficients necessary Problem 3
- \Rightarrow Massless scheme is impractical & unstable
- \Rightarrow Solution: massive (charm) scheme

Felix Stollenwerk

Improved Wilson Fermion (& Gauge) action

$$\mathcal{L}_{I} = \mathcal{L}_{G} + \bar{\Psi} D_{W} \Psi + \bar{\Psi} M \Psi$$

$$+ a \left(\begin{array}{c} c_{sw}(g_{0}^{2} \\ \end{array}) \bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi \right)$$

$$+ a \left(\begin{array}{c} \sigma_{1}(g_{0}^{2}) \bar{\Psi} M^{2} \Psi + \\ \sigma_{2}(g_{0}^{2}) \operatorname{Tr}[M] \bar{\Psi} M \Psi + \\ \sigma_{3}(g_{0}^{2}) \operatorname{Tr}[M^{2}] \bar{\Psi} \Psi + \\ \sigma_{4}(g_{0}^{2}) (\operatorname{Tr}[M])^{2} \bar{\Psi} \Psi + \\ \sigma_{5}(g_{0}^{2}) \operatorname{Tr}[M] \operatorname{Tr}[F_{\mu\nu} F_{\mu\nu}] \right)$$

 σ_5 -term $\sim S_G$

 $\tilde{g}_0^2 = g_0^2 (1 + a m_{q,c} \ \boldsymbol{b_g}/N_f)$

 σ_{1-4} -terms Determine all renormalization and improvement constants at finite $am_{q,c}^*$

$$\begin{split} & Z_A^{\text{light}}(\tilde{g}_0^2, am_{q,c}^\star) \\ & \boldsymbol{c}_A \quad (\tilde{g}_0^2, am_{q,c}^\star) \end{split}$$

from light quark chiral symmetry

Improved Wilson Fermion (& Gauge) action

$$\mathcal{L}_{I} = \mathcal{L}_{G} + \bar{\Psi} D_{W} \Psi + \bar{\Psi} M \Psi$$

$$+ a \left(\begin{array}{c} c_{sw}(g_{0}^{2} \\ \end{array}) \bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi \right)$$

$$+ a \left(\begin{array}{c} \sigma_{1}(g_{0}^{2}) \bar{\Psi} M^{2} \Psi + \\ \\ \sigma_{2}(g_{0}^{2}) \operatorname{Tr}[M] \bar{\Psi} M \Psi + \\ \\ \sigma_{3}(g_{0}^{2}) \operatorname{Tr}[M^{2}] \bar{\Psi} \Psi + \\ \\ \sigma_{4}(g_{0}^{2}) (\operatorname{Tr}[M])^{2} \bar{\Psi} \Psi + \\ \\ \end{array} \right)$$

 \bullet σ_5 -term $\sim S_G$

$$\tilde{g}_0^2 = g_0^2 (1 + a m_{q,c} \ \mathbf{b}_{g} / N_f)$$

 σ_{1-4} -terms Determine all renormalization and improvement constants at finite $am_{q,c}^*$

$$\begin{split} & Z_A^{\text{light}}(\tilde{g}_0^2, am_{q,c}^\star) \\ & \boldsymbol{c}_A \quad (\tilde{g}_0^2, am_{q,c}^\star) \end{split}$$

from light quark chiral symmetry

Improved Wilson Fermion (& Gauge) action

$$\begin{aligned} \mathcal{L}_{I} &= \mathcal{L}_{G} + \bar{\Psi} D_{W} \Psi + \bar{\Psi} M \Psi \\ &+ a \left(\begin{array}{c} c_{\mathrm{sw}}(g_{0}^{2} & , am_{q,c}^{\star}) \bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi \right) \\ &+ a \left(\begin{array}{c} \sigma_{1}(g_{0}^{2}) \bar{\Psi} M^{2} \Psi + \\ & \sigma_{2}(g_{0}^{2}) \operatorname{Tr}[M] \bar{\Psi} M \Psi + \\ & \sigma_{3}(g_{0}^{2}) \operatorname{Tr}[M] \bar{\Psi} \Psi + \\ & \sigma_{4}(g_{0}^{2}) (\operatorname{Tr}[M])^{2} \Psi \Psi + \\ & \sigma_{5}(g_{0}^{2}) \operatorname{Tr}[M] \operatorname{Tr}[F_{\mu\nu}F_{\mu\nu}] \right) \end{aligned}$$

 \bullet σ_5 -term $\sim S_G$

$$\tilde{g}_0^2 = g_0^2 (1 + a m_{q,c} \ \mathbf{b}_{g} / N_f)$$

• σ_{1-4} -terms Determine all renormalization and improvement constants at finite $am_{q,c}^*$

$$\begin{split} & Z_A^{\rm light}(\tilde{g}_0^2,am_{q,c}^{\star}) \\ & \boldsymbol{c_A} \quad (\tilde{g}_0^2,am_{q,c}^{\star}) \end{split}$$

.

1

from light quark chiral symmetry

|▲ 문 ► ▲ 문 ►

Improved Wilson Fermion (& Gauge) action

$$\mathcal{L}_{I} = \mathcal{L}_{G} + \bar{\Psi} D_{W} \Psi + \bar{\Psi} M \Psi + a \left(\begin{array}{c} c_{sw}(g_{0}^{2}, am_{q,c}^{\star}) \bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi \right) \\ + \mathcal{O}(am_{q,u}, am_{q,s}) \\ + \mathcal{O}(a^{2} \left(m_{q,c} - m_{q,c}^{\star} \right) \right)$$

 \bullet σ_5 -term $\sim S_G$

$$\tilde{g}_0^2 = g_0^2 (1 + a m_{q,c} \ \mathbf{b}_{g} / N_f)$$

• σ_{1-4} -terms Determine all renormalization and improvement constants at finite $am_{q,c}^{\star}$

$$\begin{array}{l} Z_A^{\rm light}(\tilde{g}_0^2,am_{q,c}^{\star}) \\ \hline {\color{black}c_A} & (\tilde{g}_0^2,am_{q,c}^{\star}) \end{array} \end{array}$$

.

1

from light quark chiral symmetry

Improved Wilson Fermion (& Gauge) action

$$\begin{aligned} \mathcal{L}_{I} &= \mathcal{L}_{G} + \bar{\Psi} D_{W} \Psi + \bar{\Psi} M \Psi \\ &+ a \bigg(\begin{array}{c} c_{\mathrm{sw}}(g_{0}^{2}, am_{q,l}^{\star}, am_{q,c}^{\star}) \bar{\Psi} \frac{i}{4} \sigma_{\mu\nu} F_{\mu\nu} \Psi \bigg) \\ &+ \mathcal{O}(am_{q,u}, am_{q,s}) \\ &+ \mathcal{O}(a^{2} \left(m_{q,c} - m_{q,c}^{\star} \right) \right) \\ &+ \mathcal{O}(a^{2} \left(m_{q,u} - m_{q,l}^{\star} \right) \right) \\ &+ \mathcal{O}(a^{2} \left(m_{q,s} - m_{q,l}^{\star} \right) \bigg) \end{aligned}$$

→ c_{sw} : Determination at finite $am_{q,l}^{\star}$ and $am_{q,c}^{\star}$ $(N_f = 3 + 1)$ \bullet σ_5 -term $\sim S_G$

$$\tilde{g}_0^2 = g_0^2 (1 + a m_{q,c} \ \mathbf{b}_{g} / N_f)$$

• σ_{1-4} -terms Determine all renormalization and improvement constants at finite $am_{q,c}^{\star}$

$$\begin{split} & Z_A^{\rm light}(\tilde{g}_0^2,am_{q,c}^\star) \\ & c_A \quad (\tilde{g}_0^2,am_{q,c}^\star) \end{split}$$

.

from light quark chiral symmetry

AND TO NIL S

- Determine c_{sw} as function of 3 parameters $g_0^2, m_{q,l}^{\star}, m_{q,c}^{\star}$? × not feasible
- Fix light $(m_{q,l}^{\star})$ and charm $(m_{q,c}^{\star})$ mass to their approx. physical values
- Determine c_{sw} as function of 1 parameter g_0^2

 $\rightarrow \,\, {\rm fixes} \,\, g_0^2, \, \kappa_l, \, \kappa_c \,\, {\rm for} \,\, {\rm given} \,\, L/a$

Gradient flow coupling [Fritzsch, Ramos (2013)]

$$\bar{g}_{\mathrm{GF}}^2(L) = \mathcal{N}^{-1} t^2 \langle E(t, x_0) \rangle |_{t=c^2 L^2/8}^{x_0=T/2}$$
 with $c = 0.3$

Effective meson masses

$$\begin{split} \Gamma_{ij} &= -\tilde{\partial}_0 \log \left(f_{A,I}^{ij}(x_0) \right) \bigg|_{x_0 = T/2} & \text{time} \\ \text{with } f_A^{ij}(x_0) \sim e^{-m_{\mathrm{PS}}^{ij} \cdot x_0} \left(1 + \ldots \right) & \text{o} \end{split}$$

LCPLCF1L $\stackrel{!}{=}$ fixed12 LM_l $\stackrel{!}{=}$ $LM_s/3$ 23 LM_c $\stackrel{!}{=}$ LM_c 3

LCP implicit	
1 $\Phi_1 = \bar{g}_{GF}^2$	$\stackrel{!}{=} \Phi_1^\star$
2 $\Phi_2 = L\Gamma_{l\tilde{l}}$	$\stackrel{!}{=} \Phi_2^{\star}$
	$_{l\tilde{l}}/2) \stackrel{!}{=} \Phi_3^{\star}$

• Masses unknown in $N_f = 3 + 1$

- Resort to $N_f = 2$
- Difference is
 - $\rightarrow \mathcal{O}(a)$ effect in c_{sv}
 - $\rightarrow \mathcal{O}(a^2)$ effect in improved action

LCP

1 $L \stackrel{!}{=} \text{fixed}$ 2 $LM_l \stackrel{!}{=} LM_s/3|_{N_f=2}$ 3 $LM_c \stackrel{!}{=} LM_c|_{N_f=2}$

LCP implicit 1 $\Phi_1 = \bar{g}_{GF}^2$ $\stackrel{!}{=} \Phi_1^{\star}$ 2 $\Phi_2 = L\Gamma_{l\tilde{l}}$ $\stackrel{!}{=} \Phi_2^{\star}$ 3 $\Phi_3 = L(\Gamma_{lc} - \Gamma_{l\tilde{l}}/2) \stackrel{!}{=} \Phi_3^{\star}$

- Masses unknown in $N_f = 3 + 1$
- Resort to $N_f = 2$
- Difference is
 - $\rightarrow \mathcal{O}(a)$ effect in c_{sv}
 - $\rightarrow \mathcal{O}(a^2)$ effect in improved action

 \Leftrightarrow

LCP

1 $L \stackrel{!}{=} \text{fixed}$ 2 $LM_l \stackrel{!}{=} LM_s/3|_{N_f=2}$ 3 $LM_c \stackrel{!}{=} LM_c|_{N_f=2}$

LCP implicit
1
$$\Phi_1 = \bar{g}_{GF}^2$$
 $\stackrel{!}{=} \Phi_1^{\star}$
2 $\Phi_2 = L\Gamma_{l\tilde{l}}$ $\stackrel{!}{=} \Phi_2^{\star}$
3 $\Phi_3 = L(\Gamma_{lc} - \Gamma_{l\tilde{l}}/2) \stackrel{!}{=} \Phi_3^{\star}$

- Masses unknown in $N_f = 3 + 1$
- Resort to $N_f = 2$
- Difference is
 - $\rightarrow \mathcal{O}(a)$ effect in c_{sw}
 - $\rightarrow \mathcal{O}(a^2)$ effect in improved action

 \Leftrightarrow

LCP 1 $L \stackrel{!}{\approx} 0.8 \text{ fm}$ 2 $LM_l \stackrel{!}{=} LM_s/3|_{N_f=2}$ 3 $LM_c \stackrel{!}{=} LM_c|_{N_f=2}$

LCP implicit
1
$$\Phi_1 = \bar{g}_{GF}^2$$
 $\stackrel{!}{=} \Phi_1^* = 7.20$
2 $\Phi_2 = L\Gamma_{l\tilde{l}}$ $\stackrel{!}{=} \Phi_2^*$
3 $\Phi_3 = L(\Gamma_{lc} - \Gamma_{l\tilde{l}}/2) \stackrel{!}{=} \Phi_3^*$

Determination of Φ_1^{\star}

Configurations [Blossier et al. (2012)] $N_f = 2, \, \kappa_{sea} = \kappa_{crit}$

Determination of c_{SW} in $N_f = 3 + 1$ LQCD

9

LCP 1 $L \stackrel{!}{\approx} 0.8 \text{ fm}$ 2 $LM_l \stackrel{!}{=} LM_s/3|_{N_f=2}$ 3 $LM_c \stackrel{!}{=} LM_c|_{N_f=2}$

LCP implicit
1
$$\Phi_1 = \bar{g}_{GF}^2$$
 $\stackrel{!}{=} \Phi_1^* = 7.20$
2 $\Phi_2 = L\Gamma_{l\tilde{l}}$ $\stackrel{!}{=} \Phi_2^* = 0.59$
3 $\Phi_3 = L(\Gamma_{lc} - \Gamma_{l\tilde{l}}/2) \stackrel{!}{=} \Phi_3^*$

Determination of Φ_2^{\star}

LCP 1 $L \stackrel{!}{\approx} 0.8 \text{ fm}$ 2 $LM_l \stackrel{!}{=} LM_s/3|_{N_f=2}$ 3 $LM_c \stackrel{!}{=} LM_c|_{N_f=2}$

LCP implicit
1
$$\Phi_1 = \bar{g}_{GF}^2$$
 $\stackrel{!}{=} \Phi_1^* = 7.20$
2 $\Phi_2 = L\Gamma_{l\tilde{l}}$ $\stackrel{!}{=} \Phi_2^* = 0.59$
3 $\Phi_3 = L(\Gamma_{lc} - \Gamma_{l\tilde{l}}/2) \stackrel{!}{=} \Phi_3^* = 5.96$

Determination of Φ_3^\star

- Configurations [Blossier et al. (2012)] $N_f=2, \, \kappa_{\rm sea}=\kappa_{\rm crit}$
- $\begin{array}{c|c} & LM_s \; {\scriptstyle [\rm Fritzsch \, et \, al. \, (2012)]} \\ & \xrightarrow{\kappa_{\rm crit}, Z, b_m, \ldots} \\ & \xrightarrow{\kappa_l(L/a)} \end{array}$

 $\begin{array}{c|c} & LM_c & \text{[Heitger et al. (2013)]} \\ & \xrightarrow{\kappa_{\mathrm{crit}}, Z, b_m, \dots} \\ & \xrightarrow{\kappa_c(L/a)} \end{array}$

Determination of c_{SW} in $N_f = 3 + 1$ LQCD

L/a

LCP, Φ_i

 $g_0^2, \kappa_l, \kappa_c$

Impr. cond.

 c_{sw}

$$\left\langle \partial_{\mu} A^{ij}_{I\mu}(x) O \right\rangle = 2m^{ij}(x_0) \langle P^{ij}(x) O \rangle + \mathcal{O}(a^n)$$

• Use $c_{\rm A}$ -independent combination of m^{ij} :

$$m^{ij}(x_0), m^{ij}(y_0) \to M^{ij}(x_0, y_0)$$

Improvement condition:

 $\Delta M^{l\tilde{l}} = M^{l\tilde{l}} \left(3T/4, T/4 \right) - M'^{l\tilde{l}} \left(3T/4, T/4 \right) \stackrel{!}{=} 0$

Use of light flavors $l\tilde{l}$ \rightarrow want to primarily improve light quark physics

Strategy overview

The procedure may lead to something like

(NO real data!!)

 LCP determines maximal g₀² (at smallest L/a)

э

Strategy overview

 The procedure may lead to something like
 (NO real data!!)

 LCP determines maximal g₀² (at smallest L/a)

Felix Stollenwerk

Determination of c_{sw} in $N_f = 3 + 1$ LQCD

L/a = 8

Tune bare parameters to LCP

1.1	
Z	 -
$\overline{1}$	 4
\sum	 4
\overline{X}	 -

 8×8^3

$c_{\rm sw}$	g_{0}^{2}	κ_l	κ_c	Φ_1	Φ_2	Φ_3
1.6	1.719	0.1403	0.1222	7.13(3)	0.56(2)	5.95(1)
1.9	1.785	0.1374	0.1203	7.17(2)	0.58(1)	5.95(1)
1.95	1.797	0.1369	0.1199	7.17(4)	0.58(2)	5.99(1)
		·				
			LCP Φ_i^*	7.20	0.59	5.96

Tuning criteria $(\delta X = |X - X^*|)$

keep cutoff effects under control (M_c !)

include statistical errors of Φ_i conservatively

L/a = 8

Tune bare parameters to LCP

		1.0
		-
${}$		-1
		-
\geq	-	
\sim	-	-

 8×8^3

$c_{\rm sw}$	g_{0}^{2}	κ_l	κ_c	Φ_1	Φ_2	Φ_3
1.6	1.719	0.1403	0.1222	7.13(3)	0.56(2)	5.95(1)
1.9	1.785	0.1374	0.1203	7.17(2)	0.58(1)	5.95(1)
1.95	1.797	0.1369	0.1199	7.17(4)	0.58(2)	5.99(1)
			LCP Φ_i^*	7.20	0.59	5.96

Tuning criteria $(\delta X = |X - X^*|)$

$$\left(\frac{\delta L}{L^*}, \frac{\delta M_l}{M_l^*}, \frac{\delta M_c}{M_c^*} < 5\%\right)$$

keep cutoff effects under control (M_c !)

i = 1, 2, 3

include statistical errors of Φ_i conservatively

L/a = 8

Tune bare parameters to LCP

2 Measure $\Delta M^{l\tilde{l}}$

	10 mg	 F		
		 t	1	
	0	 ţ	1	
l	-	 t	1	

$c_{\rm sw}$	g_0^2	$a\Delta M^{l\tilde{l}}$
1.6	1.719	0.0135(10)
1.9	1.785	0.0060(10)
1.95	1.797	0.0037(14)
2.1	1.830	- 0.0012(21)
2.2	1.852	- 0.0045(20)
2.08(3)	1.825(7)	0

3 Interpolate in c_{sw}

4 Interpolate in g_0^2

Status and Outlook

Help for tuning from perturbative evolution of lattice spacing a with g_0^2 :

$$\frac{a(g_0^2)}{a((g_0')^2)} = e^{-[g_0^{-2} - (g_0')^{-2}]/(2b_0)} [g_0^2/(g_0')^2]^{-b_1/(2b_0^2)} \left[1 + \mathcal{O}((g_0')^2)\right], \ g_0 < g_0'$$

Estimated range covered with L/a = 8 - 24:

$$g_0^2 \in [1.472, 1.825]$$

Felix	Sto	llenw	/erk
-------	-----	-------	------

Summary

- Determination of c_{sw}
 - \rightarrow 1st step in $N_f = 3 + 1$ simulations with massive charm quark
- Mass-dependent renormalization scheme
 - \rightarrow avoid large number of improvement coefficients
 - \rightarrow avoid large mass-dependent corrections
- Line of constant physics
 - \rightarrow fix all relevant physical scales in finite volume
 - \rightarrow numerical values from $N_f = 2$
- Improvement condition in standard way (PCAC)
- First results for L/a = 8

Thank you!