The Bosomic side of Compositite Dark IMatter

Michael I. Buchoff INT, UTW, Seattle

PRD 88014502 (2013)

Primary collaborators:

 Sergey Syritsyn Ethan Neil Graham Kribs Chris Schroeder Enrico RinaldiPRD 89094508 (2013)
(Lattice)
arXiv: 1407.????
(Pheno)

Lattice Strong Dynamics Collaboration

James Osborn

Rich Brower
Michael Cheng Claudio Rebbi Oliver Witzel
Evan Weinberg

Ethan Neil

Ethan Neil

Meifeng Lin
Graham Kribs

Evan Berkowitz Enrico Rinaldi
Chris Schroeder
Pavlos Vranas
Joe Kiskis

David Schaich

Tom Appelquist George Fleming Gennady Voronov

Mike Buchoff

A SLICE OF THE UNIVERSE New Physics！！
 We Are Here （QCD，EM， SM，etc．）

How do we know DM is there？

䇣 Rotation Curves of Galaxies

䗱Gravitational Lensing

龉Cosmic Microwave Background

Three Primary Properties OF DARK MATTER

Dark Matter Candidate should:

> 1. Be Long Lived - Explains why dark matter has survived to today \Rightarrow Implies a new symmetry and/or charge

2. Be EW Charge Neutral

- Explains why there is no visible evidence
\Rightarrow Implies lightest stable particle is chargeless

3. Explain Observed Relic Density

$$
\rho_{D} \sim 0.25 \rho_{c}
$$

THERMAL RELIC

Dark Matter Annihilates

How much do we see today?

One approach to DM theories:

Choose DM Mass
 Choose DM Interactions

$$
\rho_{D} \sim 0.25 \rho_{c}
$$

"WIMP Miracle"
Assume Interactions at/near EW Scale

$$
M_{D} \sim \mathrm{TeV}
$$

THERMAL RELIC

AN ASYMMETRIC ALTERNATIVE?
 S.Nussinov (1985) S.M. Barr, R.S.Chivukula, E. Farhi (1990) R.S.Chivukula, T.P.Walker (1990) D.B.Kaplan (1992)
 Observe a different relation:

$$
\begin{aligned}
\rho_{D} & \sim 5 \rho_{B} \\
M_{D} n_{D} & \sim 5 M_{B} n_{B}
\end{aligned}
$$

Observe a different relation:

$$
\begin{aligned}
\rho_{D} & \sim 5 \rho_{B} \quad \text { Asymmetry } \\
M_{D} n_{D} & \sim 5 M_{B} n_{B}
\end{aligned}
$$

Observe a different relation:

> Asymmetry

If DM density is thermal:
Unjustified Accident
Natural if DM density is also tied to asymmetry

$$
\begin{aligned}
& n_{D} \sim n_{B} \Longleftrightarrow \\
& M_{D} \gg M_{B} \Longleftrightarrow \\
& M_{D} \sim 5 \mathrm{GeV} \\
& n_{B} \gg n_{D} \sim e^{-M_{D} / T_{s p h}}
\end{aligned}
$$

Sphaleron connection

Direct or Indirect coupling to EW

Large DM
Mass

Studying strongly-coupled composite systems critical to fully understand landscape of DM theories
...this is where the lattice can play significant role!

Three Primary Properties OF DARK MATTER

Dark Matter Candidate should:

1. Be Long Lived

\Rightarrow Implies a new symmetry and/or charge Example: Baryons - Baryon Number Mesons - G-parity Y.Bai, R.J.Hill (2010)
2. Be EW Charge Neutral

3. Explain observed relic density

\Rightarrow Implies lightest stable particle is chargeless Example: Can form neutral baryons
\Rightarrow Asymmetry require charge couplings Example: Charged Constituents

LONG TERM OBJECTIVE

ULTIMATE GOAL:

To place a lower bound on nuclear cross-sections of composite DM with charged constituents

We Want:

* Bound general classes of composite DM from first principles
\star Explore Higgs exchange and EM moments for direct detection
* Study classes of models with minimal SM interaction strength

Final Goal:

LONG TERM OBJECTIVE

ULTIMATE GOAL:

To place a lower bound on nuclear cross-sections of composite DM with charged constituents

We Want:

\star Bound general classes of composite DM from first principles \star Explore Higgs exchange and EM moments for direct detection
\star Study classes of models with minimal SM interaction strength

Final Goal:

OUR FOCUS: DIRECT DETECTION

粼 Before asking any other question, how strong are direct detection bounds?

LUX: PRL 112.091303

Experimental DM Frontier

Spin-independent (coherent) - Very tight constraints
$\sigma \lesssim 10^{-45} \mathrm{~cm}^{2}$

BARYON FLAVOR SYMMETRY

\star Flavor Non-symmetric
Example: (3-color neutron ala QCD)

\star Flavor Symmetric Example: (4-color neutron)

HOW WE MIGHT SEE IT?

Dim-5

$$
\bar{\psi} \sigma^{\mu \nu} \psi F_{\mu \nu}
$$

Magnetic Moment

Dim-6
$(\bar{\psi} \psi) v_{\mu} \partial_{\nu} F^{\mu \nu}$
Charge
Radius

Dim-7
$(\bar{\psi} \psi) F_{\mu \nu} F^{\mu \nu}$
Polarizability

Odd Nc
No baryon flavor sym.
Odd Nc
Baryon flavor sym.

Even Nc
No Baryon flavor sym.

Even Nc
Baryon flavor sym.

回可
\square

FOCUS OF PREVIOUS WORK

数 Direct detection exclusions for odd number of colors

Explore:
of 3-colors
\& Multiple degenerate masses
of 2 and 6 light flavors

Explores a range of confining theories for odd Nc theory

EXCLUSION PLOTS

Dashed horizontal line - Xenon100 PRD 88014502 (2013)

EXCLUSION PLOTS

Dashed horizontal line - Xenon100 PRD 88014502 (2013)

LEP Bound on charged particles:
$\mathrm{M}>88 \mathrm{GeV}$

FOCUS OF RECENT WORK

䪁 Direct detection exclusions for even number of colors

Explore:
of 4-colors
of Multiple degenerate masses (quenched)
\& Baryon spectra and sigma term

Allows for cross-section bounds from Higgs exchange

4-COLOR BARYONS

粦Bosonic baryons
Die Flavar: U
Spin-2: $\quad \mathcal{O}_{B, S 2}^{N_{F}=1}=\left(U^{T} C \gamma^{i} U\right)\left(U^{T} C \gamma^{j} U\right) \quad i \neq j$
Twa Flarvors: U D
$\square \square \square \quad$ Spin-2: $\quad \mathcal{O}_{B, S 2}^{N_{F}=2}=\left(U^{T} C \gamma^{i} U\right)\left(U^{T} C \gamma^{j} U\right) \quad i \neq j$

Spin-1: $\quad \mathcal{O}_{B, S 1}^{N_{F}=2}=\left(U^{T} C \gamma^{i} U\right)\left(U^{T} C \gamma^{5} D\right)$
Spin-0: $\quad \mathcal{O}_{B, S 1}^{N_{F}=2}=\left(U^{T} C \gamma^{5} D\right)\left(U^{T} C \gamma^{5} D\right)$

HIGGS EXCHANGE

絜Higgs-nucleon cross-section:

$$
\begin{aligned}
\sigma_{0}(B, n) & =\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2} \\
\mathcal{M}_{a} & =\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{f}\langle B| \bar{f} f|B\rangle \sum_{q}\langle a| \bar{q} q|a\rangle
\end{aligned}
$$

HIGGS EXCHANGE

絜Higgs-nucleon cross-section:

$$
\underset{\substack{\text { Per } \\ \text { Nucleon }}}{\sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}}
$$

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{f}\langle B| \bar{f} f|B\rangle \sum_{q}\langle a| \bar{q} q|a\rangle
$$

HIGGS EXCHANGE

歯Higgs-nucleon cross-section:

$$
\underset{\substack{\text { Per } \\ \text { Nucleon }}}{ } \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{\text {Dark }}\langle B| \bar{f} f|B\rangle \sum_{\text {SM }}^{\sum_{q}\langle a| \bar{q} q|a\rangle}
$$

HIGGS EXCHANGE

Higgs-nucleon cross-section:

$$
\operatorname{Per} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{\text {Dark }}\langle B| \bar{f} f|B\rangle \sum_{\text {SM }}^{\sum_{q}\langle a| \bar{q} q|a\rangle}
$$

SM:
Light Quarks: $\langle n| m_{q} \bar{q} q|n\rangle=m_{n} f_{q}^{(n)}$
Heavy Quarks: $\langle n| m_{q} \bar{q} q|n\rangle=\frac{2}{27} m_{n}\left(1-\sum_{q=u, d, s} f_{q}^{(n)}\right)$

HIGGS EXCHANGE

Higgs-nucleon cross-section:

$$
\operatorname{Per} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{\text {Dark }}\langle B| \bar{f} f|B\rangle \underbrace{\sum_{q}\langle a| \bar{q} q|a\rangle}_{\text {SM }}
$$

SM:

$$
\begin{aligned}
& \text { Light Quarks: }\langle n| m_{q} \bar{q} q|n\rangle=m_{n} f_{q}^{(n)} \\
& \text { Heavy Quarks: }\langle n| m_{q} \bar{q} q|n\rangle=\frac{2}{27} m_{n}\left(1-\sum_{q=u, d, s} f_{q}^{(n)}\right)
\end{aligned}
$$

HIGGS EXCHANGE

Higgs-nucleon cross-section:

$$
\operatorname{Per} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{\text {Dark }}\langle B| \bar{f} f|B\rangle \underbrace{\sum_{q}\langle a| \bar{q} q|a\rangle}_{\text {SM }}
$$

Dark:

$$
\left.\frac{1}{\sqrt{2}} y_{f} \equiv \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v} \quad f_{f}^{B}=\frac{\langle B| m_{f} \bar{f} f|B\rangle}{m_{B}}=\frac{m_{f}}{m_{B}} \frac{\partial m_{B}}{\partial m_{f}}
$$

HIGGS EXCHANGE

Higgs-nucleon cross-section:

$$
\operatorname{Per} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{\text {Dark }}\langle B| \bar{f} f|B\rangle \underbrace{\sum_{q}\langle a| \bar{q} q|a\rangle}_{\text {SM }}
$$

Dark:

$$
\left.\frac{1}{\sqrt{2}} y_{f} \equiv \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v}
$$

$$
f_{f}^{B}=\frac{\langle B| m_{f} \bar{f} f|B\rangle}{m_{B}}=\frac{m_{f}}{m_{B}} \frac{\partial m_{B}}{\partial m_{f}}
$$

HIGGS EXCHANGE

Higgs-nucleon cross-section:

$$
\operatorname{Per} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{\text {Dark }}\langle B| \bar{f} f|B\rangle \underbrace{\sum_{q}\langle a| \bar{q} q|a\rangle}_{\text {SM }}
$$

Dark:

$$
\left.\frac{1}{\sqrt{2}} y_{f} \equiv \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v}
$$

$$
f_{f}^{B}=\frac{\langle B| m_{f} \bar{f} f|B\rangle}{m_{B}}=\underbrace{\frac{m_{f}}{m_{B}} \frac{\partial m_{B}}{\partial m_{f}}}_{\begin{array}{c}
\text { (Feynman-Hellmann) } \\
\text { Strong Dynamics } \\
\text { (Non-perturbative) }
\end{array}}
$$

Robust lattice results

HIGGS EXCHANGE

* Higgs-nucleon cross-section:

$$
\operatorname{Per} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}}
$$

$\mathrm{SM}: \quad g_{p, n}=\frac{m_{p, n}}{v}\left[\sum_{q=u, d, s} f_{q}^{(p, n)}+\frac{6}{27}\left(1-\sum_{q=u, d, s} f_{q}^{(p, n)}\right)\right]$

Dark: $\quad g_{B}=\left.\frac{m_{B}}{v} \sum_{f} \frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v} f_{f}^{(B)}$

HIGGS EXCHANGE

絜Higgs-nucleon cross-section:

$$
{ }_{\text {Per }} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon
$\mathrm{SM}: \quad g_{p, n}=\frac{m_{p, n}}{v}\left[\sum_{q=u, d, s} f_{q}^{(p, n)}+\frac{6}{27}\left(1-\sum_{q=u, d, s} f_{q}^{(p, n)}\right)\right]$

$$
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}}
$$

Lattice

Dark: $\quad g_{B}=\left.\frac{m_{B}}{v} \sum_{f} \frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v} f_{f}^{(B)}$

HIGGS EXCHANGE

Higgs-nucleon cross-section:

$$
{ }_{\text {Per }} \sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2}
$$

Nucleon

$$
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}}
$$

Lattice

SM:

$$
g_{p, n}=\frac{m_{p, n}}{v}\left[\sum_{q=u, d, s} f_{q}^{(p, n)}+\frac{6}{27}\left(1-\sum_{q=u, d, s} f_{q}^{(p, n)}\right)\right]
$$

Dark: $\quad g_{B}=\left.\frac{m_{B}}{v} \sum_{f} \frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v} f_{f}^{(B)} \longleftarrow$ Lattice

CALCULATION DETAILS

28 quenched Ensembles:

- Two \# colors
- Four lattice volumes
- Three lattice spacings
- 3-6 fermion masses

N_{c}	β	κ	$N_{s}^{3} \times N_{t}$	\# Meas.
4	11.028	0.1554	$16^{3} \times 32$	4878
			$32^{3} \times 64$	1126
		0.15625	$16^{3} \times 32$	4765
			$32^{3} \times 64$	1146
			$48^{3} \times 96$	1091
		0.1572	$32^{3} \times 64$	1075
	11.5	0.1515	$16^{3} \times 32$	2975
			$32^{3} \times 64$	1057
		0.1520	$16^{3} \times 32$	2872
			$32^{3} \times 64$	1052
		0.1523	$16^{3} \times 32$	2976
			$32^{3} \times 64$	914
			$48^{3} \times 96$	637
		0.1524	$14^{3} \times 128$	489
		0.1527	$32^{3} \times 64$	2970
	12.0	0.1475	$32^{3} \times 64$	863
		0.1480	$32^{3} \times 64$	1125
		0.1486	$32^{3} \times 64$	1189
		0.1491	$16^{3} \times 32$	411
		0.1491	$32^{3} \times 64$	1050
		0.1491	$48^{3} \times 96$	1150
		0.1491	$64^{3} \times 128$	928
		0.1495	$32^{3} \times 64$	1043
		0.1496	$32^{3} \times 64$	1009
		0.175	0.1547	$32^{3} \times 64$
	$32^{3} \times 64$	1000		
			1000	

Table 1: Ensembles and number of measurements

CALCULATION DETAILS

28 quenched Ensembles:

- Two \# colors
- Four lattice volumes
- Three lattice spacings
- 3-6 fermion masses

Summary of Lattice Details:

1. Volume systematic within statistical errors

N_{c}	β	κ	$N_{s}^{3} \times N_{t}$	\# Meas.
4	11.028	0.1554	$16^{3} \times 32$	4878
			$32^{3} \times 64$	1126
		0.15625	$16^{3} \times 32$	4765
			$32^{3} \times 64$	1146
			$48^{3} \times 96$	1091
		0.1572	$32^{3} \times 64$	1075
	11.5	0.1515	$16^{3} \times 32$	2975
			$32^{3} \times 64$	1057
		0.1520	$16^{3} \times 32$	2872
			$32^{3} \times 64$	1052
		0.1523	$16^{3} \times 32$	2976
			$32^{3} \times 64$	914
			$48^{3} \times 96$	637
		0.1524	$14^{3} \times 128$	489
			$32^{3} \times 64$	2970
		0.1527	$32^{3} \times 64$	1011
	12.0	0.1475	$32^{3} \times 64$	1125
		0.1480	$32^{3} \times 64$	1189
		0.1486	$32^{3} \times 64$	1055
		0.1491	$16^{3} \times 32$	411
		0.1491	$32^{3} \times 64$	1050
		0.1491	$48^{3} \times 96$	1150
		0.1491	$64^{3} \times 128$	928
		0.1495	$32^{3} \times 64$	1043
		0.1496	$32^{3} \times 64$	1009
		0.0175	0.1537	$32^{3} \times 64$
	0.1547	$32^{3} \times 64$	1000	

Table 1: Ensembles and number of measurements.

CALCULATION DETAILS

28 quenched Ensembles:

- Two \# colors
- Four lattice volumes
- Three lattice spacings
- 3-6 fermion masses

Summary of Lattice Details:

1. Volume systematic within statistical errors
2. Discretization systematic within statistical errors

N_{c}	β	κ	$N_{s}^{3} \times N_{t}$	\# Meas.
4	11.028	0.1554	$16^{3} \times 32$	4878
			$32^{3} \times 64$	1126
		0.15625	$16^{3} \times 32$	4765
			$32^{3} \times 64$	1146
			$48^{3} \times 96$	1091
		0.1572	$32^{3} \times 64$	1075
	11.5	0.1515	$16^{3} \times 32$	2975
			$32^{3} \times 64$	1057
		0.1520	$16^{3} \times 32$	2872
			$32^{3} \times 64$	1052
		0.1523	$16^{3} \times 32$	2976
			$32^{3} \times 64$	914
			$48^{3} \times 96$	637
		0.1524	$14^{3} \times 128$	489
			$32^{3} \times 64$	2970
		0.1527	$32^{3} \times 64$	1011
	12.0	0.1475	$32^{3} \times 64$	1125
		0.1480	$32^{3} \times 64$	1189
		0.1486	$32^{3} \times 64$	1055
		0.1491	$16^{3} \times 32$	411
		0.1491	$32^{3} \times 64$	1050
		0.1491	$48^{3} \times 96$	1150
		0.1491	$64^{3} \times 128$	928
		0.1495	$32^{3} \times 64$	1043
		0.1496	$32^{3} \times 64$	1009
		0.0175	0.1537	$32^{3} \times 64$
	0.1547	$32^{3} \times 64$	1000	

Table 1: Ensembles and number of measurements.

CALCULATION DETAILS

28 quenched Ensembles:

- Two \# colors
- Four lattice volumes
- Three lattice spacings
- 3-6 fermion masses

Summary of Lattice Details:

1. Volume systematic within statistical errors
2. Discretization systematic within statistical errors
3. Three points to extract slope (more would be preferred)

LARGE N COMPARISONS

Solid - 4 colors
Dashed - 3 colors

Black - Spin 2 Blue - Spin 1 Brown - Spin 0 Green - Spin 3/2 Purple - Spin $1 / 2$ Orange - Vector Red- Pseudoscalar

$$
\begin{aligned}
& *: M\left(N_{c}, J\right)=N_{c} m_{0}+\frac{J(J+1)}{N_{c}} B+\mathcal{O}\left(1 / N_{c}^{2}\right) \\
& \diamond: M\left(N_{c}, J\right)=N_{c} m_{0}^{(0)}+C+\frac{J(J+1)}{N_{c}} B+\mathcal{O}\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

LARGE N COMPARISONS

Solid - 4 colors
Dashed - 3 colors

Black - Spin 2 Blue - Spin 1
Brown - Spin 0
Green - Spin 3/2 Purple - Spin $1 / 2$
Orange - Vector
Red- Pseudoscalar

$$
\begin{aligned}
& *: M\left(N_{c}, J\right)=N_{c} m_{0}+\frac{J(J+1)}{N_{c}} B+\mathcal{O}\left(1 / N_{c}^{2}\right) \\
& \diamond: M\left(N_{c}, J\right)=N_{c} m_{0}^{(0)}+C \leftarrow \frac{J(J+1)}{N_{c}} B+\mathcal{O}\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

Key Observation from DeGrand (2013)

SCALE SETTING

How do we define lattice spacing in physical units?
Lattice QCD: Hadron Masses, HQ potentials, etc.
(Example) $\quad a M_{\Omega}=\#$

$$
a \approx \frac{\#}{1670 \mathrm{MeV}}
$$

Technicolor:
"Higgs" vev

$$
a f_{\pi} \xrightarrow{m_{f} \rightarrow 0} \# \square a \approx \frac{\#}{246 \mathrm{GeV}}
$$

Dark Matter:
Dark Matter Mass

$$
a M_{B}=\#
$$

$a \approx \frac{\#}{M_{B}}$

SCALE SETTING

How do we define lattice spacing in physical units?
Lattice QCD: Hadron Masses, HQ potentials, etc.
(Example) $\quad a M_{\Omega}=\#$

$$
a \approx \frac{\#}{1670 \mathrm{MeV}}
$$

Technicolor:
"Higgs" vev

$$
a f_{\pi} \xrightarrow{m_{f} \rightarrow 0} \# \square a \approx \frac{\#}{246 \mathrm{GeV}}
$$

Dark Matter:
Dark Matter Mass

$$
a M_{B}=\#
$$

$a \approx \frac{\#}{M_{B}}$

sigma Term \& Higgs bound

$$
\begin{aligned}
& \left.\alpha \equiv \frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v} \\
& 0.153 \lesssim f^{(B)} \lesssim 0.338 \\
& 2.82 \lesssim \frac{m_{B}}{m_{P S}} \lesssim 3.71
\end{aligned}
$$

PARTICULAR MODEL

蝶Four Dirac Flavors with vector-like masses

Mass Matrix (custodial symmetric):

Field	$\mathrm{SU}(N)_{D}$	$\left(\mathrm{SU}(2)_{L}, Y\right)$	Q
$F_{1}=\binom{F_{1}^{u}}{F_{1}^{d}}$	\mathbf{N}	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
$F_{2}=\binom{F_{2}^{u}}{F_{2}^{d}}$	$\overline{\mathbf{N}}$	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
F_{3}^{u}	\mathbf{N}	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{3}^{d}	\mathbf{N}	$(\mathbf{1},-1 / 2)$	$-1 / 2$
F_{4}^{u}	$\overline{\mathbf{N}}$	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{4}^{d}	$\overline{\mathbf{N}}$	$(\mathbf{1},-1 / 2)$	$-1 / 2$

$\mathcal{L}_{M}=\left(\bar{\psi}_{A}^{u} \bar{\psi}_{B}^{u}\right)\left(\begin{array}{cc}M-\Delta & y v / \sqrt{2} \\ y v / \sqrt{2} & M+\Delta\end{array}\right)\binom{\psi_{A}^{u}}{\psi_{B}^{u}}+\left(\bar{\psi}_{A}^{d} \bar{\psi}_{B}^{d}\right)\left(\begin{array}{cc}M-\Delta & y v / \sqrt{2} \\ y v / \sqrt{2} & M+\Delta\end{array}\right)\binom{\psi_{A}^{d}}{\psi_{B}^{d}}$

PARTICULAR MODEL

蝶Four Dirac Flavors with vector-like masses

Mass Matrix (custodial symmetric):

Field	$\mathrm{SU}(N)_{D}$	$\left(\mathrm{SU}(2)_{L}, Y\right)$	Q
$F_{1}=\binom{F_{1}^{u}}{F_{1}^{d}}$	\mathbf{N}	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
$F_{2}=\binom{F_{2}^{u}}{F_{2}^{d}}$	$\overline{\mathbf{N}}$	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
F_{3}^{u}	\mathbf{N}	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{3}^{d}	\mathbf{N}	$(\mathbf{1},-1 / 2)$	$-1 / 2$
F_{4}^{u}	$\overline{\mathbf{N}}$	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{4}^{d}	$\overline{\mathbf{N}}$	$(\mathbf{1},-1 / 2)$	$-1 / 2$

$$
\begin{gathered}
\mathcal{L}_{M}=\left(\bar{\psi}_{A}^{u} \bar{\psi}_{B}^{u}\right)\left(\begin{array}{cc}
M-\Delta & y v / \sqrt{2} \\
y v / \sqrt{2} & M+\Delta
\end{array}\right)\binom{\psi_{A}^{u}}{\psi_{B}^{u}}+\left(\bar{\psi}_{A}^{d} \bar{\psi}_{B}^{d}\right)\left(\begin{array}{cc}
M-\Delta & y v / \sqrt{2} \\
y v / \sqrt{2} & M+\Delta
\end{array}\right)\binom{\psi_{A}^{d}}{\psi_{B}^{d}} \\
m_{ \pm}=M \pm \sqrt{2 y^{2} v^{2}+4 \Delta^{2}}
\end{gathered}
$$

PARTICULAR MODEL

蝶Four Dirac Flavors with vector-like masses

Mass Matrix (custodial symmetric):

Field	$\mathrm{SU}(N)_{D}$	$\left(\mathrm{SU}(2)_{L}, Y\right)$	Q
$F_{1}=\binom{F_{1}^{u}}{F_{1}^{d}}$	\mathbf{N}	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
$F_{2}=\binom{F_{2}^{u}}{F_{2}^{d}}$	$\overline{\mathbf{N}}$	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
F_{3}^{u}	\mathbf{N}	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{3}^{d}	\mathbf{N}	$(\mathbf{1},-1 / 2)$	$-1 / 2$
F_{4}^{u}	$\overline{\mathbf{N}}$	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{4}^{d}	$\overline{\mathbf{N}}$	$(\mathbf{1},-1 / 2)$	$-1 / 2$

$$
\begin{gathered}
\mathcal{L}_{M}=\left(\bar{\psi}_{A}^{u} \bar{\psi}_{B}^{u}\right)\left(\begin{array}{cc}
M-\Delta & y v / \sqrt{2} \\
y v / \sqrt{2} & M+\Delta
\end{array}\right)\binom{\psi_{A}^{u}}{\psi_{B}^{u}}+\left(\bar{\psi}_{A}^{d} \bar{\psi}_{B}^{d}\right)\left(\begin{array}{cc}
M-\Delta & y v / \sqrt{2} \\
y v / \sqrt{2} & M+\Delta
\end{array}\right)\binom{\psi_{A}^{d}}{\psi_{B}^{d}} \\
m_{ \pm}=M \pm \sqrt{2 y^{2} v^{2}+4 \Delta^{2}} \\
\text { Mass in lattice calculation }
\end{gathered}
$$

PARTICULAR MODEL

糕 Four Dirac Flavors with vector-like masses	Field	$\mathrm{SU}(N)_{D}$	$\left(\mathrm{SU}\left(2_{L}, Y\right)\right.$	Q
	$F_{1}=\binom{F_{1}^{u}}{F_{1}^{d}}$	N	$(2,0)$	$\binom{+1 / 2}{-1 / 2}$
	$F_{2}=\binom{F_{2}^{u}}{F_{2}^{d}}$	$\overline{\mathrm{N}}$	$(2,0)$	$\binom{+1 / 2}{-1 / 2}$
	F_{3}^{u}	N	(1,+1/2)	+1/2
	F_{3}^{d}	N	(1,-1/2)	-1/2
	F_{4}^{u}	$\overline{\mathrm{N}}$	(1,+1/2)	+1/2
	F_{4}^{d}	$\overline{\mathrm{N}}$	(1, -1/2)	-1/2

Mass Matrix (custodial symmetric):

$$
\begin{gathered}
\mathcal{L}_{M}=\left(\bar{\psi}_{A}^{u} \bar{\psi}_{B}^{u}\right)\left(\begin{array}{cc}
M-\Delta & y v / \sqrt{2} \\
y v / \sqrt{2} & M+\Delta
\end{array}\right)\binom{\psi_{A}^{u}}{\psi_{B}^{u}}+\left(\bar{\psi}_{A}^{d} \bar{\psi}_{B}^{d}\right)\left(\begin{array}{cc}
M-\Delta & y v / \sqrt{2} \\
y v / \sqrt{2} & M+\Delta
\end{array}\right)\binom{\psi_{A}^{d}}{\psi_{B}^{d}} \\
m_{ \pm}=M \pm \sqrt{2 y^{2} v^{2}+4 \Delta^{2}} \\
\text { Mass in lattice calculation }
\end{gathered}
$$

$$
\begin{array}{ll}
\alpha \approx \frac{y v}{M} \quad M \gg 2 y v \gg \Delta & \text { Linear } \\
\alpha \approx \frac{2(y v)^{2}}{M \Delta} & M \gg \Delta \gg 2 y v
\end{array} \quad \text { Quadratic }
$$

CROSS SECTION SUMMARY

蝶 Back to cross section:

$$
\begin{gathered}
\sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2} \\
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}} \\
g_{B}=\left(\frac{m_{B}}{v}\right) \alpha f^{(B)}
\end{gathered}
$$

$$
f^{(B)}=\frac{m_{-}}{m_{B}} \frac{\partial m_{B}}{\partial m_{-}} \quad \alpha=2 \cos \theta \sin \theta \frac{y v}{m_{-}}
$$

CROSS SECTION SUMMARY

蝶 Back to cross section:

$$
\begin{gathered}
\sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2} \\
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}} \\
g_{B}=\left(\frac{m_{B}}{v}\right) \alpha f^{(B)}
\end{gathered}
$$

Extract from

$$
\begin{gathered}
\text { Lattice } \\
f^{(B)}=\frac{m_{-}}{m_{B}} \frac{\partial m_{B}}{\partial m_{-}}
\end{gathered}
$$

$$
\alpha=2 \cos \theta \sin \theta \frac{y v}{m_{-}}
$$

CROSS SECTION SUMMARY

蝶 Back to cross section:

$$
\begin{gathered}
\sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2} \\
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}}
\end{gathered}
$$

Extract from

$$
g_{B}=\left(\frac{m_{B}}{v}\right) \alpha f^{(B)}
$$

$$
\begin{gathered}
\text { Lattice } \\
f^{(B)}=\frac{m_{-}}{m_{B}} \frac{\partial m_{B}}{\partial m_{-}}
\end{gathered}
$$

Varies with scale setting

$$
\alpha=2 \cos \theta \sin \theta \frac{y v}{m_{-}}
$$

CROSS SECTION SUMMARY

檪 Back to cross section:

$$
\begin{gathered}
\sigma_{0}(B, n)=\frac{\mu\left(m_{B}, m_{n}\right)^{2}}{\pi A^{2}}\left(Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right)^{2} \\
\mathcal{M}_{p, n}=\frac{g_{p, n} g_{B}}{m_{h}^{2}}
\end{gathered}
$$

Extract from

$$
\begin{gathered}
\text { Lattice } \\
f^{(B)}=\frac{m_{-}}{m_{B}} \frac{\partial m_{B}}{\partial m_{-}}
\end{gathered}
$$

$$
\begin{aligned}
& g_{B}=\left(\frac{m_{B}}{v}\right) \alpha f^{(B)} \\
& \text { Varies with scale setting } \\
& \quad \text { Varies with model parameters } \\
&=2 \cos \theta \sin \theta \frac{y v}{m_{-}}
\end{aligned}
$$

Linear Regime Bounds

$$
y_{\mathrm{eff}} \equiv y\left(\frac{M_{B}}{M}\right) \approx \alpha \frac{M_{B}}{v}
$$

QUADRATIC REGIME BOUNDS

$$
y_{\mathrm{eff}}^{2} \equiv y^{2}\left(\frac{M_{B}^{2}}{M \Delta}\right) \approx \alpha \frac{M_{B}^{2}}{v^{2}}
$$

DIAGRAMMATIC SUMMARY

Composite DM addresses stability, neutrality, and density

DIAGRAMMATIC SUMMARY

Strongly coupled DM motivated from relic density

Composite DM addresses stability, neutrality, and density

Our Focus: Direct Detection of composites with charged constituents

DIAGRAMMATIC SUMMARY

Strongly coupled DM motivated from relic density

Composite DM addresses stability, neutrality, and density

Our Focus: Direct Detection of composites with charged constituents

Dominant interaction:
Magnetic Moment
Charge Radii
$M_{D M}>10 \mathrm{TeV}$

DIAGRAMMATIC SUMMARY

Strongly coupled DM motivated from relic density

Composite DM addresses stability, neutrality, and density

Our Focus: Direct Detection of composites with charged constituents

Dominant interaction:
Magnetic Moment
Charge Radii
$M_{D M}>10 \mathrm{TeV}$

DIAGRAMMATIC SUMMARY

Strongly coupled DM motivated from relic density

Composite DM addresses

 stability, neutrality, and density
Our Focus: Direct Detection of composites with charged constituents

*With custodial symmetry

```
Dominant interaction:
    Magnetic Moment
        Charge Radii
MDM}>>10\textrm{TeV
Fermion masses of
chiral origin excluded
```


DIAGRAMMATIC SUMMARY

Strongly coupled DM motivated from relic density

Composite DM addresses

 stability, neutrality, and density
Our Focus: Direct Detection of composites with charged constituents

Dominant interaction:
Magnetic Moment Charge Radii

$$
M_{D M}>10 \mathrm{TeV}
$$

DIAGRAMMATIC SUMMARY

Strongly coupled DM motivated from relic density

Composite DM addresses

 stability, neutrality, and density
Our Focus: Direct Detection of composites with charged constituents

*With custodial symmetry
Dominant interaction:
Magnetic Moment Charge Radii

$$
M_{D M}>10 \mathrm{TeV}
$$

VERY PRELIMINARY Polarizability Teaser

Neutron (Detmold, Tiburzi, Walker-Loud, 2010)

Neutral Kaon (Detmold, Tiburzi, Walker-Loud, 2009)

Backup

(Blair Edwards Presentation- Lattice Meets Experiment 2013)

Spin-Independent cross section limits for 50 GeV WIMP versus time, including future projections

(Blair Edwards Presentation- Lattice Meets Experiment 2013)

VOLUME EFFECTS

$\beta=11.028$

$\beta=11.5$

VOLUME EFFECTS

$\beta=12.0$

LATTICE SPACING EFFECTS

BARYON MASS DERIVATIVE

Coarse lattice spacing

Intermediate lattice spacing

$\frac{\partial m_{B}}{\partial m_{f}}=6.55(91)$

BARYON MASS DERIVATIVE

Coarse lattice spacing

$$
\frac{m_{P S}}{m_{V}}=0.695(4)
$$

$\frac{m_{f}}{m_{B}} \frac{\partial m_{B}}{\partial m_{f}}=0.261(14)$

Intermediate lattice spacing

$$
\frac{m_{P S}}{m_{V}}=0.685(14)
$$

$$
\frac{m_{f}}{m_{B}} \frac{\partial m_{B}}{\partial m_{f}}=0.249(35)
$$

BARYON MASS DERIVATIVE

Coarse lattice spacing

$$
\begin{aligned}
0.153 \lesssim \frac{m_{f}}{m_{B}} \frac{\partial m_{B}}{\partial m_{f}} & \lesssim 0.338 \\
\frac{m_{P S}}{m_{V}} \approx 0.55 & \frac{m_{P S}}{m_{V}} \approx 0.77
\end{aligned}
$$

VEC. MASS SUPPRESSION?

糕Mass Matrix: $\quad \psi_{L} \equiv\binom{F_{1}}{F_{2}^{\dagger}}, \psi_{R} \equiv\binom{F_{3}}{F_{4}^{\dagger}}$

$$
\langle H\rangle=\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right) \quad \square \mathcal{L}_{M}=\left(\bar{\psi}_{L} \bar{\psi}_{R}\right)\left(\begin{array}{cc}
m_{12} & y v \\
y v & m_{34}
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

VEC. MASS SUPPRESSION?

釈Mass Matrix: $\quad \psi_{L} \equiv\binom{F_{1}}{F_{2}^{\dagger}}, \psi_{R} \equiv\binom{F_{3}}{F_{4}^{\dagger}}$

$$
\langle H\rangle=\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right) \quad \square \mathcal{L}_{M}=\left(\bar{\psi}_{L} \bar{\psi}_{R}\right)\left(\begin{array}{cc}
m_{12} & y v \\
y v & m_{34}
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

$$
m_{ \pm}=\frac{1}{2}\left(m_{12}+m_{34} \pm \sqrt{4 y^{2} v^{2}+\left(m_{34}-m_{12}\right)^{2}}\right) \quad\binom{\psi_{+}}{\psi_{-}}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

Lattice Mass
Lattice Fermion

VEC. MASS SUPPRESSION?

䇣 Mass Matrix: $\quad \psi_{L} \equiv\binom{F_{1}}{F_{2}^{\dagger}}, \psi_{R} \equiv\binom{F_{3}}{F_{4}^{\dagger}}$

$$
\langle H\rangle=\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right) \quad \square \mathcal{L}_{M}=\left(\bar{\psi}_{L} \bar{\psi}_{R}\right)\left(\begin{array}{cc}
m_{12} & y v \\
y v & m_{34}
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

$$
m_{ \pm \pm}=\frac{1}{2}\left(m_{12}+m_{34} \pm \sqrt{4 y^{2} v^{2}+\left(m_{34}-m_{12}\right)^{2}}\right) \quad\binom{\psi_{+}}{\psi_{-}}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

VEC. MASS SUPPRESSION?

看Mass Matrix: $\quad \psi_{L} \equiv\binom{F_{1}}{F_{2}^{\dagger}}, \psi_{R} \equiv\binom{F_{3}}{F_{4}^{\dagger}}$

$$
\langle H\rangle=\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right) \quad \quad \mathcal{L}_{M}=\left(\bar{\psi}_{L} \bar{\psi}_{R}\right)\left(\begin{array}{cc}
m_{12} & y v \\
y v & m_{34}
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

$$
m_{ \pm \pm}=\frac{1}{2}\left(m_{12}+m_{34} \pm \sqrt{4 y^{2} v^{2}+\left(m_{34}-m_{12}\right)^{2}}\right) \quad\binom{\psi_{+}}{\psi_{-}}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

$$
y_{f} \rightarrow \begin{cases}y & 2 y v \gg\left(m_{34}-m_{12}\right) \\ \frac{2 y^{2} v}{\left(m_{34}-m_{12}\right)} & \left(m_{34}-m_{12}\right) \gg 2 y v\end{cases}
$$

VEC. MASS SUPPRESSION?

粼Mass Matrix: $\quad \psi_{L} \equiv\binom{F_{1}}{F_{2}^{\dagger}}, \psi_{R} \equiv\binom{F_{3}}{F_{4}^{\dagger}}$

$$
\langle H\rangle=\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right) \quad \square \mathcal{L}_{M}=\left(\bar{\psi}_{L} \bar{\psi}_{R}\right)\left(\begin{array}{cc}
m_{12} & y v \\
y v & m_{34}
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

$$
m_{ \pm}=\frac{1}{2}\left(m_{12}+m_{34} \pm \sqrt{4 y^{2} v^{2}+\left(m_{34}-m_{12}\right)^{2}}\right) \quad\binom{\psi_{+}}{\psi_{-}}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{array}\right)\binom{\psi_{L}}{\psi_{R}}
$$

$$
y_{f}=2 y \cos \theta \sin \theta
$$

$$
\text { } y_{f} \rightarrow\left\{\begin{array}{ll}
y & 2 y v \gg\left(m_{34}-m_{12}\right) \\
\text { Suppression }
\end{array} \frac{2 y^{2} v}{\left(m_{34}-m_{12}\right)}\left(m_{34}-m_{12}\right) \gg 2 y v\right.
$$

EFFECTIVE MASS EXAMPLE

COARSE LATTICE SPACING

INTERMED. LATTICE SPACING

INTERMED. LATTICE SPACING

TIGHT CONSTRAINTS?

膆 Assume a Dirac particle with net Z-boson charge

$$
\sigma_{S I} \approx \frac{2}{\pi} G_{F}^{2} m_{N}^{2} \frac{\bar{N}^{2}}{A^{2}} \approx \frac{\bar{N}^{2}}{A^{2}}\left(3 \times 10^{-38} \mathrm{~cm}^{2}\right) \quad \frac{\bar{N}^{2}}{A^{2}} \sim \frac{1}{4}
$$

Current spin-independent bounds: $\sigma \lesssim 10^{-45} \mathrm{~cm}^{2}$
Excludes particles of this kind to masses greater than thousands of TeV

Neutralinos avoid this:

$$
\text { Majorana } \leftrightharpoons \text { Spin-Dependent }
$$

This will plague composites with odd numbers of EW doublets!

However:

Asymmetric relic density suggests negligible thermal abundance

Small Thermal Abundance
Large Annihilation rate
:---:
Couplings

Tricky to achieve for perturbative, elementary DM
Strongly-coupled composite theories most interesting...
...this is where the lattice can play significant role!

PARTICULAR MODEL

蝶 Four Dirac Flavors with vector-like masses

Kinetic:

Field	$\mathrm{SU}(N)_{D}$	$\left(\mathrm{SU}(2)_{L}, Y\right)$	Q
$F_{1}=\binom{F_{1}^{u}}{F_{1}^{d}}$	\mathbf{N}	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
$F_{2}=\binom{F_{2}^{u}}{F_{2}^{d}}$	$\overline{\mathbf{N}}$	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
F_{3}^{u}	\mathbf{N}	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{3}^{d}	\mathbf{N}	$(\mathbf{1},-1 / 2)$	$-1 / 2$
F_{4}^{u}	$\overline{\mathbf{N}}$	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{4}^{d}	$\overline{\mathbf{N}}$	$(\mathbf{1},-1 / 2)$	$-1 / 2$

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{D}}= i F_{1}^{\dagger} \bar{\sigma}^{\mu} \nabla_{\mu, L} F_{1}+i F_{2}^{\dagger} \bar{\sigma}^{\mu} \nabla_{\mu, L}^{*} F_{2}+i F_{3}^{u \dagger} \bar{\sigma}^{\mu} \nabla_{\mu, R} F_{3}^{u \dagger}+i F_{3}^{d \dagger} \bar{\sigma}^{\mu} \nabla_{\mu, R} F_{3}^{d \dagger} \\
&+i F_{4}^{u \dagger} \bar{\sigma}^{\mu} \nabla_{\mu, R}^{*} F_{4}^{u \dagger}+i F_{4}^{d \dagger} \bar{\sigma}^{\mu} \nabla_{\mu, R}^{*} F_{4}^{d \dagger} \\
& \nabla_{L}^{\mu}=\partial^{\mu}+i g A^{a, \mu}\left(\tau_{L}^{a} / 2\right) \\
&\left(\nabla_{L}^{\mu}\right)^{*}=\partial^{\mu}-i g A^{a, \mu}\left(\tau_{L}^{a} / 2\right) \\
& \nabla_{R}^{\mu}=\partial^{\mu}+i g^{\prime} B^{\mu}\left(\tau_{R}^{3} / 2\right) \\
&\left(\nabla_{R}^{\mu}\right)^{*}=\partial^{\mu}-i g^{\prime} B^{\mu}\left(\tau_{R}^{3} / 2\right)
\end{aligned}
$$

PARTICULAR MODEL

数 Four Dirac Flavors with vector-like masses

Masses:

Field	$\mathrm{SU}(N)_{D}$	$\left(\mathrm{SU}(2)_{L}, Y\right)$	Q
$F_{1}=\binom{F_{1}^{u}}{F_{1}^{d}}$	\mathbf{N}	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
$F_{2}=\binom{F_{2}^{u}}{F_{2}^{d}}$	$\overline{\mathbf{N}}$	$(\mathbf{2}, 0)$	$\binom{+1 / 2}{-1 / 2}$
F_{3}^{u}	\mathbf{N}	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{3}^{d}	\mathbf{N}	$(\mathbf{1},-1 / 2)$	$-1 / 2$
F_{4}^{u}	$\overline{\mathbf{N}}$	$(\mathbf{1},+1 / 2)$	$+1 / 2$
F_{4}^{d}	$\overline{\mathbf{N}}$	$(\mathbf{1},-1 / 2)$	$-1 / 2$

Chiral

$$
\begin{aligned}
\mathcal{L}_{\mathcal{M}}= & -y_{14}^{u} \epsilon_{i j} F_{1}^{i} H^{j} F_{4}^{d}-y_{14}^{d} \delta_{i j} F_{1}^{i}\left(H^{i}\right)^{j} F_{4}^{u}+y_{23}^{d} \epsilon_{i j} F_{2}^{i} H^{j} F_{3}^{d}+y_{23}^{u} \delta_{i j} F_{2}^{i}\left(H_{i j}^{i} F_{1}^{i} F_{2}^{j}+M_{34}^{u} F_{3}^{u} F_{4}^{d}-M_{34}^{d} F_{3}^{d} F_{4}^{u}+\right.\text { h.c. }
\end{aligned}
$$

Vector-like

