Computational Efficiency and Spectrum Results for Staggered Wilson Fermions 32nd International Symposium on Lattice Field Theory

Christian Zielinski

Division of Mathematical Sciences Nanyang Technological University Singapore

Collaborators: David H. Adams (NTU) and Dániel Nógrádi (Eötvös University)

Background

Introduction

Background on staggered Wilson fermions

- Constructed by adding a "Wilson term" to staggered fermions [D. Adams PRL(2010), PLB(2011); C. Hoelbling, PLB(2011)]
 - Four flavors \rightarrow one or two physical flavors
- Theoretical viability
 - Two flavor version: no fine-tuning of new counterterms
 - One flavor version: fine-tuning of new gluonic counterterm
- Expected to be more computationally efficient than usual Wilson fermions

This talk

- Update on computational efficiency
 - Previous results for $16^3 \times 32$ lattice with $\beta = 6$
 - New results for $20^3 \times 40$ lattice with $\beta = 6$ and $\beta = 6.136716$ tests dependence on volume and lattice spacing
- Results for the spectrum of the staggered Wilson Dirac operator over a range of lattices: 8^4 to $16^3\times32$
 - Spectrum improves significantly for larger lattices
 - Resolves a paradox regarding earlier results of de Forcrand *et al.* on computational efficiency of staggered overlap fermions

Update on Computational Efficiency

└─ Methodology

Measuring the computational efficiency

• The cost of inverting the Dirac operator on a source for staggered Wilson is compared with usual Wilson at fixed pion mass m_{π}

• Cost:

$$cost = (\# CG iters) \times (cost per CG iter)$$

 $\approx\!\mathrm{cost}$ matrix-vec. mult.

Ratio:

$$\frac{\text{cost}_{W}}{\text{cost}_{SW}} = \underbrace{\frac{(\# \text{ CG iters})_{W}}{(\# \text{ CG iters})_{SW}}}_{\text{depends on } m_{\pi}} \times \underbrace{\frac{(\text{cost MV mult.})_{W}}{(\text{cost MV mult.})_{SW}}}_{\text{depends only on algorithm}}$$
(2)

(1)

Update on Computational Efficiency

└─ Methodology

Cost of matrix-vector multiplication

- Independent of lattice size, β and pion mass
- Cost ratio for matrix-vector multiplication can be estimated from FLOP counts:

$$\frac{(\text{FLOPs})_{W}}{(\text{FLOPs})_{SW}} = \frac{4 \times 1392 \text{ FLOPs/site}}{1743 \text{ FLOPs/site}} \approx 3.2$$
(3)

- Also depends on memory bandwidth requirements
- We estimate

$$\frac{(\text{cost MV mult.})_{W}}{(\text{cost MV mult.})_{SW}} \approx 2 - 3 \tag{4}$$

Agrees with de Forcrand et al.

Update on Computational Efficiency

Previous results

Ratio of number of CG iterations

- Computed at fixed pion masses
 - Need to determine dependence of pion mass m_{π} on bare quark mass m

Figure: Previously done for $16^3 \times 32$ lattice at $\beta = 6$

Update on Computational Efficiency

Previous results

Ratio of number of CG iterations (cont'd)

Note: only a mild dependence on pion mass

Update on Computational Efficiency

Previous results

Summary: Computational efficiency for $16^3 \times 32$, $\beta = 6$

We found

$$\frac{\operatorname{cost}_{\mathsf{W}}}{\operatorname{cost}_{\mathsf{SW}}} = \underbrace{\frac{(\# \operatorname{CG iters})_{\mathsf{W}}}{(\# \operatorname{CG iters})_{\mathsf{SW}}}}_{\approx 2} \times \underbrace{\frac{(\operatorname{cost} \operatorname{MV mult.})_{\mathsf{W}}}{(\operatorname{cost} \operatorname{MV mult.})_{\mathsf{SW}}}}_{\approx 2-3} \approx 4 - 6 \tag{5}$$

Staggered Wilson is 4-6 times more efficient than usual Wilson for inverting the Dirac operator in this case

Update on Computational Efficiency

New results

New: Computational efficiency for $20^3 \times 40$, $\beta = 6$

• Larger physical volume \rightarrow Improves at small m_{π} , otherwise unchanged

Update on Computational Efficiency

New results

New: Computational efficiency for $20^3 \times 40$, $\beta = 6.136716$

• Smaller lattice spacing \rightarrow Significant improvement in efficiency

-Spectrum of the staggered Wilson Dirac operator

└─ Motivation

A paradox regarding the computational efficiency

- Efficiency of staggered overlap fermions investigated earlier by de Forcrand and collaborators on 12⁴ lattice. Their results:
 - Speed-up factor ≈ 10 in free field case
 - Speed-up factor $\approx 2-3$ for $\beta = 6$
- Difference between free field and $\beta = 6$ cases explained by bad behavior of the **spectrum** of the staggered Wilson Dirac operator at $\beta = 6$
- But we find a larger speed-up factor 4-6 for staggered Wilson at $\beta = 6!$
- Hypothesis: Staggered Wilson spectrum improves for larger lattices

Spectrum of the staggered Wilson Dirac operator

- Motivation

Staggered Wilson (red) vs. usual Wilson spectrum (blue)

Figure: Free field case

Spectrum of the staggered Wilson Dirac operator

Numerical results

Staggered Wilson spectrum, $\beta = 6$

-Spectrum of the staggered Wilson Dirac operator

Numerical results

Staggered Wilson spectrum, $\beta = 6$

Spectrum of the staggered Wilson Dirac operator

Numerical results

Staggered Wilson (red) vs. Wilson spectrum (blue), $\beta = 6$

Conclusions

- Two-flavor staggered Wilson fermions more efficient by factor 4 6 for inverting the Dirac operator in a background of quenched $16^3 \times 32$ lattice at $\beta = 6$
- Dependence of the speed-up factor on physical volume and lattice spacing has been investigated
 - Increases with decreasing lattice spacing
 - Mostly unchanged for increasing volume

Conclusions

Conclusions (cont'd)

- Staggered Wilson spectrum improves significantly with increasing volume
 - Efficiency results of de Forcrand *et al.* for staggered overlap on small 12⁴ lattice is not representable
 - Expect significantly better efficiency of staggered overlap on larger lattices $\geq 16^3 \times 32$
- Will investigate this in the future

Appendix

Backup slide

Appendix

Computational intensity

• A measure for bandwidth requirements is the (arithmetic) intensity

$$I = \frac{(\text{FLOPs})}{(\text{Memory transactions in byte})}$$

• We find (Clover, HISQ, ASQTAD from R. Brower, Chile 2011):

Fermions	FLOPs	IO	Intensity
Wilson	1320	1440	0.92
Wilson with clover term	1824	1728	1.06
Staggered	570	792	0.72
HISQ / ASQTAD	1146	1560	0.73
Staggered Wilson	1743	2352	0.74

(6)