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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Background

Introduction

Background on staggered Wilson fermions

• Constructed by adding a “Wilson term” to staggered fermions
[D. Adams PRL(2010), PLB(2011); C. Hoelbling, PLB(2011)]

• Four flavors → one or two physical flavors

• Theoretical viability
• Two flavor version: no fine-tuning of new counterterms
• One flavor version: fine-tuning of new gluonic counterterm

• Expected to be more computationally efficient than usual Wilson
fermions
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Background

Outline

This talk

• Update on computational efficiency
• Previous results for 163×32 lattice with β = 6
• New results for 203×40 lattice with β = 6 and β = 6.136716 tests

dependence on volume and lattice spacing

• Results for the spectrum of the staggered Wilson Dirac operator over a
range of lattices: 84 to 163×32

• Spectrum improves significantly for larger lattices
• Resolves a paradox regarding earlier results of de Forcrand et al. on

computational efficiency of staggered overlap fermions
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

Methodology

Measuring the computational efficiency

• The cost of inverting the Dirac operator on a source for staggered
Wilson is compared with usual Wilson at fixed pion mass mπ

• Cost:
cost = (# CG iters)× (cost per CG iter)︸ ︷︷ ︸

≈cost matrix-vec. mult.

(1)

• Ratio:

costW
costSW

= (# CG iters)W
(# CG iters)SW︸ ︷︷ ︸

depends on mπ

× (cost MV mult.)W
(cost MV mult.)SW︸ ︷︷ ︸

depends only on algorithm

(2)
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

Methodology

Cost of matrix-vector multiplication

• Independent of lattice size, β and pion mass
• Cost ratio for matrix-vector multiplication can be estimated from
FLOP counts:

(FLOPs)W
(FLOPs)SW

= 4×1392 FLOPs/site
1743 FLOPs/site ≈ 3.2 (3)

• Also depends on memory bandwidth requirements
• We estimate

(cost MV mult.)W
(cost MV mult.)SW

≈ 2−3 (4)

Agrees with de Forcrand et al.
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

Previous results

Ratio of number of CG iterations

• Computed at fixed pion masses
• Need to determine dependence of pion mass mπ on bare quark mass m
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Figure: Previously done for 163×32 lattice at β = 6
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

Previous results

Ratio of number of CG iterations (cont’d)
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• Note: only a mild dependence on pion mass
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

Previous results

Summary: Computational efficiency for 163×32, β = 6

We found

costW
costSW

= (# CG iters)W
(# CG iters)SW︸ ︷︷ ︸

≈2

× (cost MV mult.)W
(cost MV mult.)SW︸ ︷︷ ︸

≈2−3

≈ 4−6 (5)

Staggered Wilson is 4−6 times more efficient than usual Wilson for
inverting the Dirac operator in this case
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

New results

New: Computational efficiency for 203×40, β = 6
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• Larger physical volume → Improves at small mπ, otherwise unchanged
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Update on Computational Efficiency

New results

New: Computational efficiency for 203×40, β = 6.136716
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• Smaller lattice spacing → Significant improvement in efficiency
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Spectrum of the staggered Wilson Dirac operator

Motivation

A paradox regarding the computational efficiency

• Efficiency of staggered overlap fermions investigated earlier by de
Forcrand and collaborators on 124 lattice. Their results:

• Speed-up factor ≈ 10 in free field case
• Speed-up factor ≈ 2−3 for β = 6

• Difference between free field and β = 6 cases explained by bad behavior
of the spectrum of the staggered Wilson Dirac operator at β = 6

• But we find a larger speed-up factor 4−6 for staggered Wilson at
β = 6!

• Hypothesis: Staggered Wilson spectrum improves for larger lattices
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Spectrum of the staggered Wilson Dirac operator

Motivation

Staggered Wilson (red) vs. usual Wilson spectrum (blue)
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Figure: Free field case
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Spectrum of the staggered Wilson Dirac operator

Numerical results

Staggered Wilson spectrum, β = 6
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Spectrum of the staggered Wilson Dirac operator

Numerical results

Staggered Wilson spectrum, β = 6
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Spectrum of the staggered Wilson Dirac operator

Numerical results

Staggered Wilson (red) vs. Wilson spectrum (blue), β = 6
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Conclusions

Conclusions

• Two-flavor staggered Wilson fermions more efficient by factor 4−6 for
inverting the Dirac operator in a background of quenched 163×32
lattice at β = 6

• Dependence of the speed-up factor on physical volume and lattice
spacing has been investigated

• Increases with decreasing lattice spacing
• Mostly unchanged for increasing volume
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Conclusions

Conclusions (cont’d)

• Staggered Wilson spectrum improves significantly with increasing
volume

• Efficiency results of de Forcrand et al. for staggered overlap on small 124
lattice is not representable

• Expect significantly better efficiency of staggered overlap on larger
lattices ≥ 163×32

• Will investigate this in the future
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Appendix

Appendix

Backup slide
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Computational Efficiency and Spectrum Results for Staggered Wilson Fermions
Appendix

Computational intensity

• A measure for bandwidth requirements is the (arithmetic) intensity

I = (FLOPs)
(Memory transactions in byte) (6)

• We find (Clover, HISQ, ASQTAD from R. Brower, Chile 2011):

Fermions FLOPs IO Intensity

Wilson 1320 1440 0.92

Wilson with clover term 1824 1728 1.06

Staggered 570 792 0.72

HISQ / ASQTAD 1146 1560 0.73

Staggered Wilson 1743 2352 0.74
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