Solution to new sign problems with Hamiltonian Lattice Fermions

Emilie Huffman
Department of Physics
Duke University

June 27, 2014

Collaborator: Shailesh Chandrasekharan
Supported by DOE grant # DEFG0205ER41368
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.
- In two dimensions, given by

\[
H = t \sum_x \left[\frac{i}{2} \left(c_x^\dagger c_{x+\hat{\alpha}_1} - c_x^\dagger c_{x-\hat{\alpha}_1} \right) + \frac{i}{2} (-1)^{x_1} \left(c_x^\dagger c_{x+\hat{\alpha}_2} - c_x^\dagger c_{x-\hat{\alpha}_2} \right) \right].
\]
(1)
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.

- In two dimensions, given by

\[
H = t \sum_x \left[\frac{i}{2} \left(c_x^\dag c_{x+\hat{\alpha}_1} - c_x^\dag c_{x-\hat{\alpha}_1} \right) + \frac{i}{2} (-1)^{x_1} \left(c_x^\dag c_{x+\hat{\alpha}_2} - c_x^\dag c_{x-\hat{\alpha}_2} \right) \right].
\]

(1)

- Can be written as

\[
H = t \sum_{xy} c_x^\dag M_{xy} c_y,
\]

(2)

where

\[
M_{xy} = \frac{i}{2} \left(\delta_{x+\hat{\alpha}_1,y} - \delta_{x-\hat{\alpha}_1,y} \right) + \frac{i}{2} (-1)^{x_1} \left(\delta_{x+\hat{\alpha}_2,y} - \delta_{x-\hat{\alpha}_2,y} \right).
\]

(3)
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.

- In two dimensions, given by

\[
H = t \sum_x \left[\frac{i}{2} \left(c_x^\dagger c_{x+\hat{a}_1} - c_x^\dagger c_{x-\hat{a}_1} \right) + \frac{i}{2} (-1)^{x_1} \left(c_x^\dagger c_{x+\hat{a}_2} - c_x^\dagger c_{x-\hat{a}_2} \right) \right].
\]

(1)

- Can be written as

\[
H = t \sum_{xy} c_x^\dagger M_{xy} c_y,
\]

(2)

where

\[
M_{xy} = \frac{i}{2} \left(\delta_{x+\hat{a}_1,y} - \delta_{x-\hat{a}_1,y} \right) + \frac{i}{2} (-1)^{x_1} \left(\delta_{x+\hat{a}_2,y} - \delta_{x-\hat{a}_2,y} \right).
\]

(3)

- Particle-hole symmetry: \(c_x \rightarrow \sigma_x c_x^\dagger, \sigma_x = (-1)^{x_1+x_2} \)
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
- For Lagrangian approach, there would be doubling by a factor of 8 due to time dimension. We would naturally get $N_f = 2$ Dirac fermions, and there would be no SU(2) flavor symmetry.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
- For Lagrangian approach, there would be doubling by a factor of 8 due to time dimension. We would naturally get $N_f = 2$ Dirac fermions, and there would be no SU(2) flavor symmetry.
- There’s an issue with Hamiltonian fermions though: sign problems in some models.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
- For Lagrangian approach, there would be doubling by a factor of 8 due to time dimension. We would naturally get $N_f = 2$ Dirac fermions, and there would be no SU(2) flavor symmetry.
- There's an issue with Hamiltonian fermions though: sign problems in some models.
- The solution? Fermion bag approach.
The Naive Method

- We begin with writing $Z = \text{Tr} \left(e^{-\beta \epsilon} \right)$ as

$$Z = \text{Tr} \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} \ldots e^{-\epsilon H} \right)$$

where there are N factors such that $N \epsilon = \beta$.

(4)
The Naive Method

- We begin with writing $Z = Tr \left(e^{-\beta \epsilon} \right)$ as

$$Z = Tr \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} ... e^{-\epsilon H} \right)$$

(4)

where there are N factors such that $N \epsilon = \beta$.

- We write as a path integral:

$$Z = \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}_1 \psi_1} \langle -\bar{\psi}_1 | e^{-\epsilon H} | \psi_2 \rangle e^{-\bar{\psi}_2 \psi_2} \langle \bar{\psi}_2 | e^{-\epsilon H} | \psi_3 \rangle$$

$$e^{-\bar{\psi}_3 \psi_3} \langle \bar{\psi}_3 | e^{-\epsilon H} | \psi_4 \rangle ... e^{-\bar{\psi}_n \psi_n} \langle \bar{\psi}_n | e^{-\epsilon H} | \psi_1 \rangle$$

(5)
The Naive Method

- We begin with writing $Z = \text{Tr} \left(e^{-\beta \epsilon} \right)$ as

$$Z = \text{Tr} \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} \ldots e^{-\epsilon H} \right)$$

where there are N factors such that $N \epsilon = \beta$.

- We write as a path integral:

$$Z = \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}_1 \psi_1} \langle -\bar{\psi}_1 | e^{-\epsilon H} | \psi_2 \rangle e^{-\bar{\psi}_2 \psi_2} \langle \bar{\psi}_2 | e^{-\epsilon H} | \psi_3 \rangle$$

$$e^{-\bar{\psi}_3 \psi_3} \langle \bar{\psi}_3 | e^{-\epsilon H} | \psi_4 \rangle \ldots e^{-\bar{\psi}_n \psi_n} \langle \bar{\psi}_n | e^{-\epsilon H} | \psi_1 \rangle$$

$$= \int \left[d\phi d\bar{\psi} d\psi \right] e^{-\bar{\psi} M(\phi) \psi - S(\phi)}$$
The Naive Method

- We begin with writing $Z = \text{Tr} \left(e^{-\beta \epsilon} \right)$ as

$$Z = \text{Tr} \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} \ldots e^{-\epsilon H} \right)$$

where there are N factors such that $N \epsilon = \beta$.

- We write as a path integral:

$$Z = \int \left[d \bar{\psi} d \psi \right] e^{-\bar{\psi}_1 \psi_1} \langle -\bar{\psi}_1 | e^{-\epsilon H} | \psi_2 \rangle e^{-\bar{\psi}_2 \psi_2} \langle \bar{\psi}_2 | e^{-\epsilon H} | \psi_3 \rangle \ldots$$

$$e^{-\bar{\psi}_n \psi_n} \langle \bar{\psi}_n | e^{-\epsilon H} | \psi_1 \rangle$$

$$= \int \left[d \phi d \bar{\psi} d \psi \right] e^{-\bar{\psi} M(\phi) \psi - S(\phi)}$$

$$= \int [d \phi] e^{-S[\phi]} \det M (\phi)$$
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.

$$\langle n \rangle \neq \frac{1}{2}$$ unless $$\epsilon \to 0.$$
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
- Another problem: particle hole symmetry is lost in the naive method.
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
- Another problem: particle hole symmetry is lost in the naive method.
- The average $\langle n \rangle \neq \frac{1}{2}$ unless $\epsilon \to 0$.

Figure:
$\langle n \rangle$ approaches $\frac{1}{2}$ as $\epsilon \to 0$.
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
- Another problem: particle hole symmetry is lost in the naive method.
- The average $\langle n \rangle \neq \frac{1}{2}$ unless $\epsilon \to 0$.

$$\langle n_x \rangle = \frac{\int \left[d\bar{\psi}d\psi \right] e^{-S}\psi_x\bar{\psi}_x}{\int \left[d\bar{\psi}d\psi \right] e^{-S}}$$

![Graph showing $\langle n \rangle$ versus epsilon]
Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)
Alternative Method

- Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)
- We note that $H = H_0 + H_{\text{int}}$. Then we expand and get the following:
Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)

We note that $H = H_0 + H_{\text{int}}$. Then we expand and get the following:

$$Z = \sum_k \int [dt] (-1)^k \text{Tr} \left(e^{-(\beta-t)H_0} H_{\text{int}} e^{-(t_1-t_2)H_0} H_{\text{int}} \ldots \right) ,$$ \hspace{1cm} (8)

where there are k insertions of H_{int}.

Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)

We note that \(H = H_0 + H_{\text{int}} \). Then we expand and get the following:

\[
Z = \sum_k \int [dt] (-1)^k \text{Tr} \left(e^{-(\beta-t)H_0} H_{\text{int}} e^{-(t_1-t_2)H_0} H_{\text{int}} \cdots \right), \tag{8}
\]

where there are \(k \) insertions of \(H_{\text{int}} \).

We will see that, for a certain class of models, this expression may be written as determinants of matrices with some useful properties.
The Sign Problem in the Hamiltonian Approach

Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \tag{9} \]

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\[V \geq 2t: \text{Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).} \]
Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \]

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\[V \geq 2t: \text{Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).} \]

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s \) (\(n_x^+ = c_x^\dagger c_x, n_x^- = 1 - n_x^+ \)):

\[H_{int} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} (s_x n_x^{s_x}) (s_y n_y^{s_y}) \]

(10)
Here we focus on a specific model involving staggered fermions:

\[
H = t \sum_{x,y} c_x^{\dagger} M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \tag{9}
\]

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\[V \geq 2t: \text{Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).}\]

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s (n_x^+ = c_x^{\dagger} c_x, n_x^- = 1 - n_x^+) \):

\[
H_{int} = \frac{V}{4} \sum_{b, s_x, s_y, \langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \tag{10}
\]

Particle-hole symmetry is preserved. Making unitary transformations:

\[
H = t \sum_{x,y} d_x^{\dagger} M'_{xy} d_y + \frac{V}{4} \sum_{b, s_x, s_y, \langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \tag{11}
\]
The Sign Problem

Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \]

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s \) (\(n_x^+ = c_x^\dagger c_x, n_x^- = 1 - n_x^+ \)):

\[H_{\text{int}} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \]

(10)

Particle-hole symmetry is preserved. Making unitary transformations:

\[H = t \sum_{x,y} d_x^\dagger M'_{xy} d_y + \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \]

(11)

\[M'_{xy} = \frac{(-1)^{x_1+x_2}}{2} \left(\delta_{x+\hat{\alpha}_1,y} - \delta_{x-\hat{\alpha}_1,y} \right) + \frac{(-1)^{x_2}}{2} \left(\delta_{x+\hat{\alpha}_2,y} - \delta_{x-\hat{\alpha}_2,y} \right), \]

(12)
The Sign Problem in the Hamiltonian Approach

Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \]

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\[V \geq 2t: \text{Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).} \]

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s \) (\(n_x^+ = c_x^\dagger c_x, n_x^- = 1 - n_x^+ \)):

\[H_{int} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} (s_x n_x^{s_x}) (s_y n_y^{s_y}) \]

(10)

Particle-hole symmetry is preserved. Making unitary transformations:

\[H = t \sum_{x,y} d_x^\dagger M'_{xy} d_y + \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} (s_x n_x^{s_x}) (s_y n_y^{s_y}) \]

(11)

\[M'_{xy} = \frac{(-1)^{x_1+x_2}}{2} \left(\delta_{x+\alpha_1,y} - \delta_{x-\alpha_1,y} \right) + \frac{(-1)^{x_2}}{2} \left(\delta_{x+\alpha_2,y} - \delta_{x-\alpha_2,y} \right), \]

(12)

where \(M'^T = -DM'D, (D_{xy} = \sigma_x \delta_{xy}) \)
The Partition Function

\[
Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4} \right)^k \text{Tr} \left(e^{-\left(\beta - t_1\right)H_0} \left(s_{x'} n_{x'}^{s_{x'}} \right) \left(s_{y'} n_{y'}^{s_{y'}} \right) \right) e^{-\left(t_1 - t_2 \right)H_0} \left(s_{x''} n_{x''}^{s_{x''}} \right) \left(s_{y''} n_{y''}^{s_{y''}} \right) \cdots e^{-\left(t_{k-1} - t_k \right)H_0} \left(s_{x^{(k)}} n_{x^{(k)}}^{s_{x^{(k)}}} \right) \left(s_{y^{(k)}} n_{y^{(k)}}^{s_{y^{(k)}}} \right) e^{-t_k H_0} \right)
\]
The Partition Function

\[
Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4} \right)^k \text{Tr} \left(e^{-(\beta - t_1)H_0 (s_{x'} n_{x'}^{s'}) (s_{y'} n_{y'}^{s'})} \right)
\]

\[
e^{-(t_1 - t_2)H_0 (s_{x''} n_{x''}^{s''}) (s_{y''} n_{y''}^{s''})} \cdots e^{-(t_{k-1} - t_k)H_0 (s_{x(k)} n_{x(k)}^{s(x(k))}) (s_{y(k)} n_{y(k)}^{s(y(k))})} e^{-t_k H_0}
\]
The G-Matrix Elements

This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.

$G(s) = \begin{bmatrix}
 d_{11} & a_{12} & \cdots & a_{14} \\
 -a_{12} & d_{22} & \cdots & a_{24} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{13} & a_{23} & \cdots & d_{33} \\
 a_{14} & a_{24} & \cdots & -a_{34} \\
 \vdots & \vdots & \ddots & \vdots \\
 -a_{13} & -a_{23} & \cdots & d_{44} \\
\end{bmatrix}$

(15)

The following identities hold:

$a_{yx} = -\sigma_x a_{xy} \sigma_y$ and $d_{xx} = -s_x^2$.

Huffman and Chandrasekharan (Duke)
This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.

Thus we have:

$$Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4}\right)^k \det G([b, s, t])$$ \hspace{1cm} (14)
The G-Matrix Elements

- This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.
- Thus we have:

$$Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4}\right)^k \det G([b, s, t])$$

(14)

$$G = \begin{pmatrix}
 d_{11}[s] & a_{12} & \cdots & a_{13} & a_{14} \\
 -a_{12} & d_{22}[s] & \cdots & a_{23} & a_{24} \\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
 a_{13} & a_{23} & \cdots & d_{33}[s] & a_{34} \\
 a_{14} & a_{24} & \cdots & -a_{34} & d_{44}[s]
\end{pmatrix}$$

(15)
The G-Matrix Elements

- This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.
- Thus we have:

$$Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4} \right)^k \det G([b, s, t])$$ \hspace{1cm} (14)

$$G = \begin{pmatrix}
 d_{11}[s] & a_{12} & \cdots & a_{13} & a_{14} \\
 -a_{12} & d_{22}[s] & \cdots & a_{23} & a_{24} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{13} & a_{23} & \cdots & d_{33}[s] & a_{34} \\
 a_{14} & a_{24} & \cdots & -a_{34} & d_{44}[s]
\end{pmatrix}$$ \hspace{1cm} (15)

- The following identities hold: $a_{yx} = -\sigma_x a_{xy} \sigma_y$ and $d_{xx}[s] = -\frac{s_x}{2}$.
The Sign Problem

- However, no guarantee that these determinants will be positive. Under particle-hole symmetry, \([s] \rightarrow [-s]\), so not symmetric for fixed \(s\).

In fact, in generating 10,000 such determinants randomly, we find a severe sign problem: Figure: 10,000 determinants: 5004 were positive and 4996 were negative.
The Sign Problem

- However, no guarantee that these determinants will be positive. Under particle-hole symmetry, \([s] \rightarrow [-s]\), so not symmetric for fixed \(s\).
- In fact, in generating 10,000 such determinants randomly, we find a severe sign problem:
The Sign Problem

- However, no guarantee that these determinants will be positive. Under particle-hole symmetry, \([s] \rightarrow [-s]\), so not symmetric for fixed \(s\).
- In fact, in generating 10,000 such determinants randomly, we find a severe sign problem:

Figure: 10,000 determinants: 5004 were positive and 4996 were negative.
The Fermion Bag Technique

In our model each diagonal element can be treated as a fermion bag dependent on \([s]\). Since dependence on auxiliary bosonic field \([s]\) is freely fluctuating, we can integrate it out.
The Fermion Bag Technique

- In our model each diagonal element can be treated as a fermion bag dependent on $[s]$. Since dependence on auxiliary bosonic field $[s]$ is freely fluctuating, we can integrate it out.
- Thus, consider the $[s]$ sum:

$$\sum_{[s]} \text{Det} (G[b, s, t])$$

(16)
The Fermion Bag Technique

- In our model each diagonal element can be treated as a fermion bag dependent on \([s]\). Since dependence on auxiliary bosonic field \([s]\) is freely fluctuating, we can integrate it out.

Thus, consider the \([s]\) sum:

$$
\sum_{[s]} \text{Det} (G[b, s, t])
$$

(16)

- We may write this determinant in Grassman integral form:

$$
\sum_{[s]} \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}(D_0[s]+A([b,t]))\psi}
$$

(17)
The Fermion Bag Technique

- In our model each diagonal element can be treated as a fermion bag dependent on \([s]\). Since dependence on auxiliary bosonic field \([s]\) is freely fluctuating, we can integrate it out.

Thus, consider the \([s]\) sum:

$$\sum_{[s]} \text{Det} (G[b, s, t])$$

(16)

- We may write this determinant in Grassman integral form:

$$\sum_{[s]} \int [d\bar{\psi} d\psi] \ e^{-\bar{\psi}(D_0[s]) + A([b, t]))\psi}$$

(17)

- We first sum up the diagonal portion.
The Diagonal Sum

We note that for the diagonal part:

\[
\sum_{[s]} e^{-\bar{\psi}D_0([s])\psi} = \prod_q \sum_{s_q=1,-1} \left(1 + \frac{s_q}{2} \bar{\psi}_q \psi_q \right)
\]

(18)
The Diagonal Sum

- We note that for the diagonal part:

\[\sum_{[s]} e^{-\bar{\psi}D_0([s])\psi} = \prod_q \sum_{s_q=1,-1} \left(1 + \frac{s_q}{2} \bar{\psi}_q \psi_q \right) \] \hspace{1cm} (18)

- Which is simply:

\[\prod_q 2 = 4^k \] \hspace{1cm} (19)
The Diagonal Sum

- We note that for the diagonal part:

\[\sum_{[s]} e^{-\bar{\psi}D_0([s])\psi} = \prod_q \sum_{s_q=1,-1} \left(1 + \frac{s_q}{2} \bar{\psi}_q \psi_q \right) \]

(18)

- Which is simply:

\[\prod_q 2 = 4^k \]

(19)

- Thus our partition function is now given by:

\[Z = \sum_{[b]} \int [dt] (-V)^k \text{Det} (A([b, t])) \]

(20)
Pictorial Proof

Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:
Pictorial Proof

Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{array}{c}
1 \\
\circlearrowleft \\
2 \\
\circlearrowleft \\
\end{array}
+
\begin{array}{c}
1 \\
\circlearrowright \\
2 \\
\circlearrowright \\
\end{array}
\]
Pictorial Proof

- Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{array}{cc}
1 & 2 \\
\end{array}
\begin{array}{cc}
+ & 1 & 2
\end{array}
\]

- In our sum of the $D_0 + A$ determinants, for every term of the form

\[
\begin{array}{c}
\circlearrowleft \\
\ldots \\
\circlearrowleft \\
\circlearrowleft \\
\ldots \\
\end{array}
\]

\[
i \circlearrowleft \\
_{s_i = 1}
\]

\[
\ldots \\
\circlearrowleft \\
\ldots
\]
Pictorial Proof

- Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{array}{cc}
1 & 2 \\
\end{array} \quad + \quad \begin{array}{cc}
1 & 2 \\
\end{array}
\]

- In our sum of the $D_0 + A$ determinants, for every term of the form

\[
\begin{array}{cccc}
& & & \\
& \circ & & \circ \\
\end{array} \quad \ldots \quad \begin{array}{cccc}
& & & \\
& \circ & & \circ \\
\end{array} \quad \ldots
\]

We have one with the form
Pictorial Proof

- Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

 \[
 \begin{array}{cc}
 1 & 2 \\
 2 & 1 \\
 \end{array}
 \]

- In our sum of the $D_0 + A$ determinants, for every term of the form

 \[
 \begin{array}{cc}
 \cdots & i \\
 s_i = 1 & \cdots \\
 \end{array}
 \]

 We have one with the form

 \[
 \begin{array}{cc}
 \cdots & i \\
 s_i = -1 & \cdots \\
 \end{array}
 \]
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D}A\tilde{D}$, \(\tilde{D}_{xy} = \sigma_x \delta_{xy} \) so:

\[
(\tilde{A}\tilde{D})^T = -\tilde{A}\tilde{D}
\]

(21)
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D}A\tilde{D}$, $(\tilde{D}_{xy} = \sigma_x \delta_{xy})$ so:

 $$\left(A\tilde{D} \right)^T = -A\tilde{D}$$ \hspace{1cm} (21)

- But $\text{Det} \left(\tilde{D} \right)$ is $(-1)^k$, since there are k even sites and k odd sites. Thus:

 $$(-1)^k \text{Det} \left(A([b, t]) \right) = \text{Det} \left(A\tilde{D} \right) \geq 0$$ \hspace{1cm} (22)
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D}A\tilde{D}$, \(\tilde{D}_{xy} = \sigma_x \delta_{xy} \) so:

 \[
 (A\tilde{D})^T = -A\tilde{D}
 \] \((21) \)

- But $\text{Det}(\tilde{D})$ is $(-1)^k$, since there are k even sites and k odd sites. Thus:

 \[
 (-1)^k \text{Det}(A([b, t])) = \text{Det}(A\tilde{D}) \geq 0
 \] \((22) \)

- And we have:

 \[
 Z = \sum_{[b]} \int [dt] (V)^k \text{Det}(A([b, t]) \tilde{D})
 \] \((23) \)
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D} A \tilde{D}$, $\left(\tilde{D}_{xy} = \sigma_x \delta_{xy} \right)$ so:
 \[
 (A\tilde{D})^T = -A\tilde{D}
 \] (21)

- But $\text{Det} (\tilde{D})$ is $(-1)^k$, since there are k even sites and k odd sites. Thus:
 \[
 (-1)^k \text{Det} (A([b, t])) = \text{Det} (A\tilde{D}) \geq 0
 \] (22)

- And we have:
 \[
 Z = \sum_{[b]} \int [dt] (V)^k \text{Det} \left(A([b, t]) \tilde{D} \right)
 \] (23)

- **We have solved the sign problem. (For repulsive model!)**
Some Example Determinants

- 100 such determinants, randomly selected. All were confirmed to be positive.
Some Example Determinants

- 100 such determinants, randomly selected. All were confirmed to be positive.
- Note that the probability of positive weight configurations is exponentially smaller, because the $-\log\text{det}$ value is larger.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them. Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
- We’ve shown this works for staggered fermions, but other models can be solved with it, such as models with an odd number of flavors: SU(3) Gross-Neveu models.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
- We’ve shown this works for staggered fermions, but other models can be solved with it, such as models with an odd number of flavors: SU(3) Gross-Neveu models.
- Or we can add a staggered mass term that puts particles on the even sublattice and holes on the odd sublattice.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
- We’ve shown this works for staggered fermions, but other models can be solved with it, such as models with an odd number of flavors: SU(3) Gross-Neveu models.
- Or we can add a staggered mass term that puts particles on the even sublattice and holes on the odd sublattice.
- Possible to study new quantum critical behavior.