Excited isovector mesons using the stochastic LapH method

Colin Morningstar

Carnegie Mellon University

32nd International Symposium on Lattice Field Theory

New York, NY, USA

June 25, 2014

Outline

- project goals:
 - comprehensive survey of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 anisotropic lattices, $m_\pi \sim 240$ MeV
- extracting excited-state energies
- single-hadron and multi-hadron operators
- the stochastic LapH method
- level identification issues
- preliminary results for 20 channels I = 1, S = 0
 - correlator matrices of size 100×100
 - large number of extended single-hadron operators
 - attempt to include all needed 2-hadron operators
- preliminary results for $I = \frac{1}{2}, S = 1, T_{1u}$
- future work

Dramatis Personae

Brendan Fahy CMU

You-Cyuan Jhang CMU

David Lenkner CMU

C. Morningstar CMU

John Bulava Trinity, Dublin

Justin Foley NVIDIA

Jimmy Juge U Pacific, Stockton

Ricky Wong UC San Diego

- Thanks to NSF Teragrid/XSEDE:
 - Athena+Kraken at NICS
 - Ranger+Stampede at TACC

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_i(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \; \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$$

- ullet 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q_{a\alpha j}^A = D^{(j)}\widetilde{\psi}_{a\alpha}^{(A)}, \qquad \overline{q}_{a\alpha j}^A = \frac{\widetilde{\psi}_{a\alpha}^{(A)}}{\widetilde{\psi}_{a\alpha}}\gamma_4 D^{(j)\dagger}$$

• displacement $D^{(j)}$ is product of smeared links:

$$D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', \ x+d_{p+1}}$$

• to good approximation, LapH smearing operator is

$$S = V_s V_s^{\dagger}$$

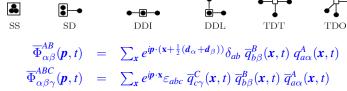
ullet columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations



group-theory projections onto irreps of lattice symmetry group

$$\overline{M}_l(t) = c_{lphaeta}^{(l)*} \overline{\Phi}_{lphaeta}^{AB}(t)$$
 $\overline{B}_l(t) = c_{lphaeta\gamma}^{(l)*} \overline{\Phi}_{lphaeta\gamma}^{ABC}(t)$

definite momentum p, irreps of little group of p

Small-a expansion of probes

link variables in terms of continuum gluon field

$$U_{\mu}(x) = \mathcal{P} \exp \left\{ ig \int_{x}^{x+\hat{\mu}} d\eta \cdot A(\eta)
ight\},$$

classical small—a expansion of displaced quark field:

$$U_j(x)U_k(x+\widehat{j})\psi_{\alpha}(x+\widehat{j}+\widehat{k}) = \exp(a\mathcal{D}_j) \exp(a\mathcal{D}_k) \psi_{\alpha}(x).$$

- where $\mathcal{D}_i = \partial_i + igA_i$ is covariant derivative
- must take smearing of fields into account
- radiative corrections of expansion coefficients (hopefully small due to smearing)

J^{PG} of continuum probe operators

isovector meson continuum probe operators

$$M_{\mu j_1 j_2 \dots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \dots \psi^u, \qquad \chi = \overline{\psi} \gamma_4$$

• where $\Gamma_0=1$ and $\Gamma_k=\gamma_k$ (analogous table inserting $\gamma_4,\ \gamma_5,\ \gamma_4\gamma_5$)

J^{PG}	O_h^G irrep	Basis operator
0++	A_{1g}^+	M_0
1-+	T_{1u}^+	M_1
1	T_{1u}^{-}	M_{01}
0+-	A_{1g}^-	$M_{11} + M_{22} + M_{33}$
1+-	T_{1g}^-	$M_{23}-M_{32}$
2+-	E_g^{-}	$M_{11} - M_{22}$
	T_{2g}^{-}	$M_{23} + M_{32}$
0++	$E_{g}^{-} \ T_{2g}^{-} \ A_{1g}^{+}$	$M_{011} + M_{022} + M_{033}$
1+-	T_{1g}^-	$M_{023}-M_{032}$
2++	E_g^+	$M_{011} - M_{022}$
	$E_g^+ \ T_{2g}^+$	$M_{023} + M_{032}$

J^{PG} of continuum probe operators (continued)

isovector meson continuum probe operators

$$M_{\mu j_1 j_2 \dots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \dots \psi^u, \qquad \chi = \overline{\psi} \gamma_4$$

• where $\Gamma_0 = 1$ and $\Gamma_k = \gamma_k$ (analogous table inserting $\gamma_4, \gamma_5, \gamma_4 \gamma_5$)

J^{PG}	O_h^G irrep	Basis operator
0	A_{1u}^-	$M_{123} + M_{231} + M_{312} - M_{321} - M_{213} - M_{132}$
1-+	T_{1u}^+	$M_{111} + M_{122} + M_{133}$
1-+	T_{1u}^+	$2M_{111} + M_{221} + M_{331} + M_{212} + M_{313}$
1	T_{1u}^-	$M_{221} + M_{331} - M_{212} - M_{313}$
2	E_u^-	$M_{123} + M_{213} - M_{231} - M_{132}$
	T_{2u}^-	$M_{221} - M_{331} + M_{313} - M_{212}$
2-+	E_u^+	$M_{123} + M_{213} - 2M_{321} - 2M_{312} + M_{231} + M_{132}$
	T_{2u}^+	$M_{221} - M_{331} - 2M_{122} + 2M_{133} - M_{313} + M_{212}$
3-+	A_{2u}^+	$M_{123} + M_{231} + M_{312} + M_{213} + M_{321} + M_{132}$
	$A_{2u}^{+} \ T_{1u}^{+}$	$2M_{111} - M_{221} - M_{331} - M_{212} - M_{313} - M_{122} - M_{133}$
	T_{2u}^+	$M_{331} - M_{212} + M_{313} - M_{122} + M_{133} - M_{221}$

Two-hadron operators

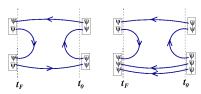
 our approach: superposition of products of single-hadron operators of definite momenta

$$c^{I_{3a}I_{3b}}_{\pmb{p}_a\lambda_a;\;\pmb{p}_b\lambda_b}\;B^{I_aI_{3a}S_a}_{\pmb{p}_a\Lambda_a\lambda_ai_a}\;B^{I_bI_{3b}S_b}_{\pmb{p}_b\Lambda_b\lambda_bi_b}$$

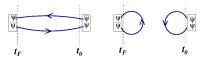
- fixed total momentum $p = p_a + p_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis $\pm \hat{x}$, $\pm \hat{y}$, $\pm \hat{z}$
 - planar diagonal $\pm \hat{x} \pm \hat{y}$, $\pm \hat{x} \pm \hat{z}$, $\pm \hat{y} \pm \hat{z}$
 - cubic diagonal $\pm \hat{x} \pm \hat{y} \pm \hat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction p_{ref}
 - each p, select one reference rotation R_{ref}^p that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines



• isoscalar mesons also require sink-to-sink quark lines



solution: the stochastic LapH method!

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix K[U]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = \delta_{ij}$
- \mathbb{Z}_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \qquad \sum_{a}P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)}$$
 $\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$

define

$$\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

Stochastic LapH method

• introduce Z_N noise in the LapH subspace

$$\rho_{\alpha k}(t)$$
, $t = \text{time}$, $\alpha = \text{spin}$, $k = \text{eigenvector number}$

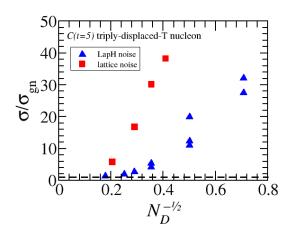
four dilution schemes:

$$\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & \text{(none)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N-1 & \text{(full)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K-1 & \text{(interlace-}K)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \, \text{mod} \, k} & a = 0, 1, \dots, K-1 & \text{(block-}K)} \end{array}$$

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to Kx = y



Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

$$Q = D^{(j)} \mathcal{S} K^{-1} \gamma_4 \mathcal{S} D^{(k)\dagger}$$

displaced-smeared-diluted quark source and quark sink vectors:

$$\varrho^{[b]}(\rho) = D^{(j)} V_s P^{(b)} \rho
\varphi^{[b]}(\rho) = D^{(j)} \mathcal{S} K^{-1} \gamma_4 V_s P^{(b)} \rho$$

 estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho^r) \ \varrho_v^{[b]}(\rho^r)^*$$

• occasionally use γ_5 -Hermiticity to switch source and sink

$$Q_{uv}^{(AB)} pprox rac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \overline{\varrho}_u^{[b]}(\rho^r) \, \overline{\varphi}_v^{[b]}(\rho^r)^*$$

defining
$$\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)$$
 and $\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)$

Source-sink factorization in stochastic LapH

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \mathcal{Q}_{i\bar{i}}^A \mathcal{Q}_{j\bar{j}}^B \mathcal{Q}_{k\bar{k}}^C$$

stochastic estimate with dilution

$$C_{\bar{l}l} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}j\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \varrho_{\bar{l}}^{(Ar)[d_A]*} \right)$$

$$\times \left(\varphi_j^{(Br)[d_B]} \varrho_{\bar{j}}^{(Br)[d_B]*} \right) \left(\varphi_k^{(Cr)[d_C]} \varrho_{\bar{k}}^{(Cr)[d_C]*} \right)$$

define baryon source and sink

$$\mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varphi^{A},\varphi^{B},\varphi^{C}) = c_{ijk}^{(l)} \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]}$$

$$\mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varrho^{A},\varrho^{B},\varrho^{C}) = c_{ijk}^{(l)} \varrho_{i}^{(Ar)[d_{A}]} \varrho_{j}^{(Br)[d_{B}]} \varrho_{k}^{(Cr)[d_{C}]}$$

correlator is dot product of source vector with sink vector

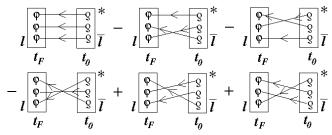
$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

Correlators and quark line diagrams

baryon correlator

$$C_{l\bar{l}} pprox rac{1}{N_R} \sum_r \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(arphi^A, arphi^B, arphi^C) \mathcal{B}_{ar{l}}^{(r)[d_A d_B d_C]}(arrho^A, arrho^B, arrho^C)^*$$

express diagrammatically

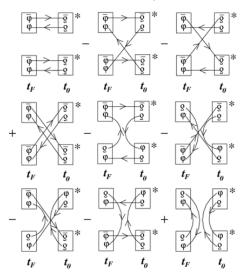


meson correlator

$$- \underbrace{I}_{q} \xrightarrow{\overline{q}} \underbrace{\overline{q}}_{q} * + \underbrace{I}_{l} \underbrace{\overline{q}}_{l-0} Y \underbrace{f}_{l-0} \overline{q} * t_{p}$$

More complicated correlators

two-meson to two-meson correlators (non isoscalar mesons)



Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group Oh

$$A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, u$$

• on-axis momenta: little group $C_{4\nu}$

$$A_1, A_2, B_1, B_2, E, G_1, G_2$$

planar-diagonal momenta: little group C_{2v}

$$A_1, A_2, B_1, B_2, G_1, G_2$$

• cubic-diagonal momenta: little group C_{3v}

$$A_1, A_2, E, F_1, F_2, G$$

include *G* parity in some meson sectors (superscript + or −)

Spin content of cubic box irreps

• numbers of occurrences of Λ irreps in J subduced

I
2
2
2
3
2

Common hadrons

• irreps of commonly-known hadrons at rest

Hadron	Irrep	Hadron	Irrep	Hadron	Irrep
π	A_{1u}^-	K	A_{1u}	η,η'	A_{1u}^+
ho	T_{1u}^+	ω,ϕ	T_{1u}^-	<i>K</i> *	T_{1u}
a_0	A_{1g}^+	f_0	A_{1g}^+	h_1	T_{1g}^-
b_1	T_{1g}^+	K_1	T_{1g}	π_1	T_{1u}^-
N, Σ	G_{1g}	Λ,Ξ	G_{1g}	Δ,Ω	H_g

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_{\pi} \approx 240$ MeV, $m_{\pi}L \sim 4.4$
 - $(24^3|240)$: 584 configs $24^3 \times 128$, $m_{\pi} \approx 240$ MeV, $m_{\pi}L \sim 3.3$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_{\pi} \approx 390$ MeV, $m_{\pi}L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations:
 200 million core hours
- quark propagators: ~ 100 million core hours
- hadrons + correlators: ∼ 40 million core hours
- storage: ~ 300 TB

Kraken at NICS

Stampede at TACC

Status report

- correlator software last_laph completed summer 2013
 - testing of all flavor channels for single and two-mesons completed
 - testing of all flavor channels for single baryon and meson-baryons ongoing
- small-a expansions of all operators completed
- inclusion of all possible 2-meson operators
- 3-meson operators currently neglected
- still finalizing analysis code
- initial focus: the 20 bosonic channels with I = 1, S = 0

Operator accounting

• numbers of operators for I = 1, S = 0, P = (0,0,0) on 32^3 lattice

$(32^2 240)$	A_{1g}^+	A_{1u}^+	A_{2g}^+	A_{2u}^+	E_g^+	E_u^+	T_{1g}^+	T_{1u}^+	T_{2g}^+	$\frac{T_{2u}^{+}}{16}$
SH	9	7	13	13	9	9	14	23	15	16
" $\pi\pi$ "	10	17	8	11	8	17	23	30	17	27
" $\eta\pi$ "	6	15	10	7	11	18	31	20	21	23
" $\phi\pi$ "	6	15	9	7	12	19	37	11	23	23
" $K\overline{K}$ "	0	5	3	5	3	6	9	12	5	10
Total	31	59	43	43	43	69	114	96	81	99
$(32^2 240)$	<u></u> —	A_{1u}^-	<u></u> _	<u></u> —	\mathbf{r}^{-}	r	T^-	- m-	-	-
(- -)	²¹ 1g	² 1u	¹ 12g	¹ 12u	\boldsymbol{L}_{g}	E_u^-	I_{1g}	T_{1u}^-	T_{2g}	T_{2u}
SH	$\frac{A_{1g}^{-}}{10}$	8	$\frac{A_{2g}^{-}}{11}$	$\frac{A_{2u}^{-}}{10}$	E _g ⁻	9	7 _{1g} 21	1 _{1u} 15	T _{2g} 19	16
			11 7		12 8		21 22		19 12	
SH	10	8	11	10	12	9	21	15	19	16
SH "ππ"	10 3	8 7	11 7	10 3	12 8	9 11	21 22	15 12	19 12	16 15
SH "ππ" "ηπ"	10 3 26	8 7 15	11 7 10	10 3 12	12 8 24	9 11 21	21 22 25	15 12 33	19 12 28	16 15 30

Operator accounting

• numbers of operators for I = 1, S = 0, P = (0,0,0) on 24^3 lattice

$(24^2 390)$	A_{1g}^+	A_{1u}^+	A_{2g}^+	A_{2u}^+	E_g^+	E_u^+	T_{1g}^+	T_{1u}^+	T_{2g}^+	T_{2u}^+
SH	9	7	13	13	9	9	14	23	15	16
" $\pi\pi$ "	6	12	2	6	8	9	15	17	10	12
" $\eta\pi$ "	2	10	8	4	8	11	21	14	14	13
" $\phi\pi$ "	2	10	8	4	8	11	23	3	14	13
" $K\overline{K}$ "	0	4	1	4	1	4	8	10	4	6
Total	19	43	32	31	34	44	81	67	57	60
$(24^2 390)$	A_{1g}^-	A_{1u}^-	A_{2g}^-	A_{2u}^-	E_g^-	E_u^-	T_{1g}^-	T_{1u}^-	T_{2g}^-	T_{2u}^-
$\frac{(24^2 390)}{\text{SH}}$	$\frac{A_{1g}^{-}}{10}$	A _{1u} 8	$\frac{A_{2g}^{-}}{11}$	A _{2u} 10	E _g 12	<i>E</i> _{<i>u</i>} 9	7 _{1g} 20	T _{1u} 15	T _{2g} 19	T _{2u} 16
			A_{2g}^{-} 11 6				T _{1g} 20 18			7 _{2u} 16 9
SH	10	8	11	10	12	9	20	15	19	16
SH "ππ"	10 1	8 5	11 6	10 2	12 3	9 7	20 18	15 8	19 10	16 9
SH "ππ" "ηπ"	10 1 19	8 5 9	11 6 4	10 2 6	12 3 13	9 7 12	20 18 11	15 8 18	19 10 15	16 9 14

Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

$$C_{ij}(t) = \sum_{n} Z_{i}^{(n)} Z_{j}^{(n)*} e^{-E_{n}t}, \qquad Z_{j}^{(n)} = \langle 0 | O_{j} | n \rangle$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$$

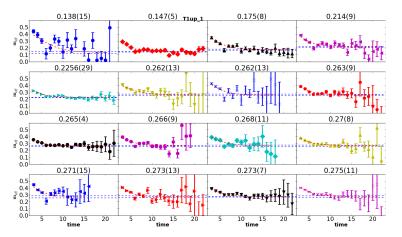
- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough so $\widetilde{C}(t)$ diagonal for $t > \tau_D$
- ullet effective masses $\widetilde{m}_{lpha}^{
 m eff}(t)=rac{1}{\Delta t}\ln\left(rac{\widetilde{C}_{lphalpha}(t)}{\widetilde{C}_{lphalpha}(t+\Delta t)}
 ight)$

tend to N lowest-lying stationary state energies in a channel

ullet 2-exponential fits to $\widetilde{C}_{lphalpha}(t)$ yield energies E_lpha and overlaps $Z_j^{(n)}$

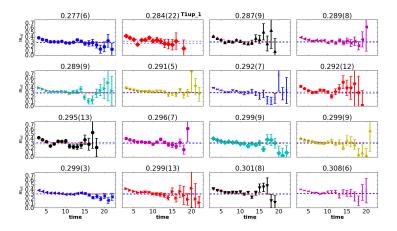
$I = 1, S = 0, T_{1u}^+$ channel

- effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 0 to 15
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits



$I=1,\ S=0,\ T_{1u}^+$ energy extraction, continued

- effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 16 to 31
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV



$I=1,\ S=0,\ T_{1u}^+$ energy extraction, continued

- effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 32 to 47
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV



Level identification

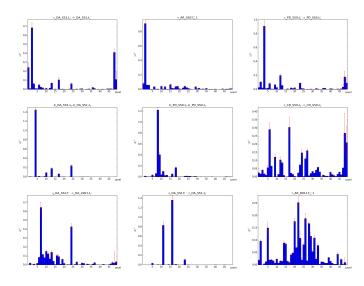
- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
 - probe operators \overline{O}_i act on vacuum, create a "probe state" $|\Phi_i\rangle$, Z's are overlaps of probe state with each eigenstate

$$|\Phi_j\rangle \equiv \overline{O}_i|0\rangle, \qquad Z_i^{(n)} = \langle \Phi_j|n\rangle$$

- $|\Phi_j\rangle\equiv\overline{O}_i|0\rangle, \qquad Z_j^{(n)}=\langle\Phi_j|n\rangle$ have limited control of "probe states" produced by probe operators
 - ideal to be ρ , single $\pi\pi$, and so on
 - use of small—a expansions to characterize probe operators
 - use of smeared quark, gluon fields
 - field renormalizations
- mixing is prevalent
- identify by dominant probe state(s) whenever possible

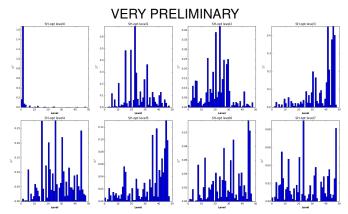
Level identification

overlaps for various operators



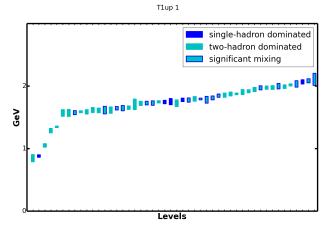
Identifying resonances

- resonances: finite-volume "precursor states"
- probes: optimized single-hadron operators
 - analyze matrix of just single-hadron operators $O_i^{[SH]}$
 - rotation to build probe operators $O_m^{\prime[SH]} = \sum_i v_i^{\prime(m)*} O_i^{[SH]}$
- obtain Z' factors of these probe operators $Z'^{(n)}_m = \langle 0 | O'^{[SH]}_m | n \rangle$



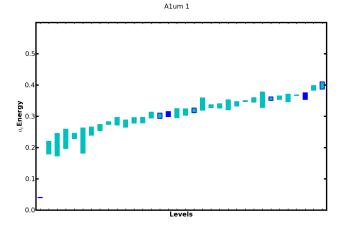
Bosonic $I = 1, S = 0, T_{1u}^+$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators



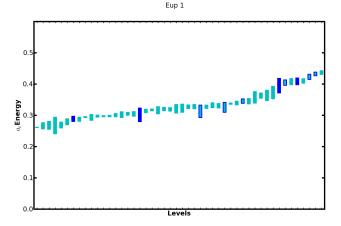
Bosonic $I = 1, S = 0, A_{1u}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators



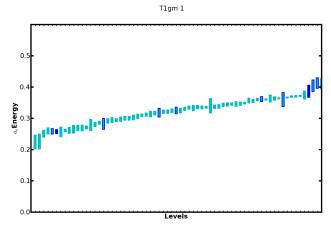
Bosonic $I = 1, S = 0, E_u^+$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators



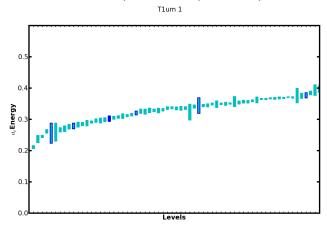
Bosonic $I=1,\ S=0,\ T_{1g}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

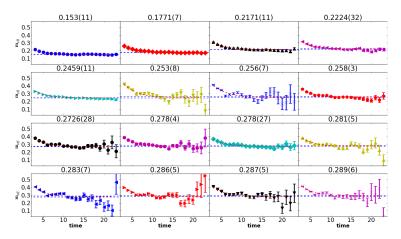


Bosonic $I = 1, S = 0, T_{1u}^-$ channel

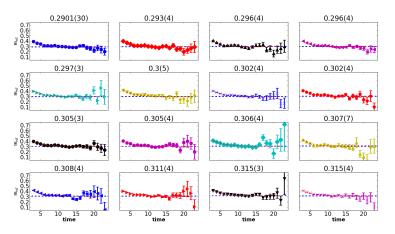
- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators



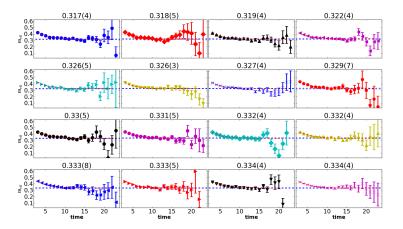
- kaon channel: effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits



- effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits

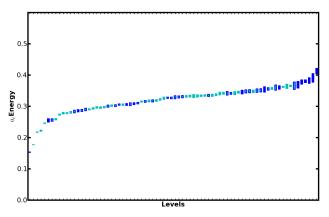


- effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits



- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

kaon T1u 32

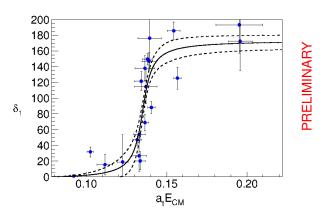


Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques

$I = 1 \pi \pi$ scattering phase shift

- various channels, various total momenta, $32^3 \times 256$, $m_{\pi} \approx 240$ MeV
- Brendan Fahy talk (Monday), collaborator Ben Hoerz (Dublin)
- results below very preliminary



References

S. Basak et al., *Group-theoretical construction of extended baryon operators in lattice QCD*, Phys. Rev. D **72**, 094506 (2005).

S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).

C. Morningstar et al., *Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD*, Phys. Rev. D **83**, 114505 (2011).

C. Morningstar et al., *Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD*, Phys. Rev. D **88**, 014511 (2013).

Conclusion and future work

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- analysis of 20 channels I = 1, S = 0 for $(24^3|390)$ and $(32^3|240)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies → need new effective field theory techniques