Chiral symmetry restoration at strong coupling?

Joyce Myers
Niels Bohr Institute

based on work with

Alexander Christensen, Peter Pedersen, and Jan Rosseel

Lattice 2014
Columbia University

25 June 2014

Outline

- Brief history of the QCD phase diagram as a function of N_{f} at $g=\infty$ and $T=0$
- Calculating $\langle\bar{\psi} \psi\rangle$ diagrammatically
- Calculating group integrals using Young Projectors
- Results

Introduction: $\langle\bar{\psi} \psi\rangle$ at $g=\infty$
For $N_{f}=0$

$$
\langle\bar{\psi} \psi\rangle \neq 0 .
$$

What happens as N_{f} is increased?
Could the chiral symmetry be restored as we see from simulations at more moderate coupling strengths?

- Using a $1 / d$ expansion to calculate $\langle\bar{\psi} \psi\rangle$ analytically [Kluberg-Stern, Morel, Petersson 1982] find that there is no phase transition to a phase in which $\langle\bar{\psi} \psi\rangle=0$ for any N_{f}
- A mean field analysis based on [Damgaard, Hochberg, Kawamoto 1985] also suggests that the critical temperature $T_{c} \neq 0$ for all N_{f}
- Using Monte-Carlo simulations [de Forcrand, Kim, Under 2013] find that a transition does occur, around $N_{f} \sim 13$ staggered fermion flavours
- Using a diagrammatic approach [Tomboulis 2013] also finds that a transition occurs, around $N_{f} \sim 10.7$ staggered flavours

Simulation results [de Forcrand, Kim, Unger 2013]

$N_{f c} \sim 13$ staggered flavours.

Leading order strong coupling expansion [Tomboulis 2013]

$N_{f c} \sim 10.7$ staggered flavours for $N_{c}=3$.

NOTE: This is a plot we created using the formulas below from [Tomboulis 2013].

$$
\langle\bar{\psi} \psi\rangle=-\lim _{m \rightarrow 0} \operatorname{tr} G
$$

$$
\operatorname{tr} G=\left[m-\left(4 d^{2}(d-1) \frac{N_{f}}{N_{c}}\left(\frac{g(m)}{2}\right)^{9}-d\left(\frac{g(m)}{2}\right)\right)\right]^{-1}
$$

$$
g(m)=\left[m-\left(4 d^{2}(d-1) \frac{N_{f}}{N_{c}}\left(\frac{g(m)}{2}\right)^{9}-\left(\frac{2 d-1}{2}\right)\left(\frac{g(m)}{2}\right)\right)\right]^{-1}
$$

Calculating the chiral condensate

[Blairon, Brout, Englert and Greensite (1981); Martin and Siu (1983); Tomboulis (2013)]
The chiral condensate is obtained from

$$
\langle\bar{\psi}(x) \psi(x)\rangle=-\operatorname{tr}[G(x, x)]=-\frac{1}{N_{f}} \partial_{m} \log Z .
$$

Integrating out the fermion contribution results in

$$
G(x, x)=\frac{\int \mathcal{D} U \operatorname{det}\left[1+K^{-1} M(U)\right]\left[\left[1+K^{-1} M(U)\right]^{-1} K^{-1}\right]_{x x}}{\int \mathcal{D} U \operatorname{det}\left[1+K^{-1} M(U)\right]},
$$

with

$$
\begin{gathered}
M_{x y} \equiv \frac{1}{2}\left[\gamma_{\mu} U_{\mu}(x) \delta_{y, x+\hat{\mu}}-\gamma_{\mu} U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{y, x-\hat{\mu}}\right] \\
K_{x y}^{-1}=m^{-1} \mathbb{I}_{N_{f}} \mathbb{I}_{N_{c}} \delta_{x y}
\end{gathered}
$$

The $K^{-1} \sim \frac{1}{m}$ suggests performing a hopping expansion.

Hopping expansion

Performing a hopping expansion on the fermion determinant leads to

$$
\operatorname{det}\left[1+K^{-1} M\right]=\exp \operatorname{tr}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(K^{-1} M\right)^{n}\right]
$$

which is a sum over closed loops.
Performing a hopping expansion on the contribution from the $2-\mathrm{pt}$ correlator results in

$$
\left[\left[1+K^{-1} M\right]^{-1} K^{-1}\right]_{x x}=\frac{1}{m}\left[\sum_{n=0}^{\infty}(-1)^{n}\left(K^{-1} M\right)^{n}\right]_{x x}
$$

which contains all loops that begin and end at site x.
Since tr [odd \# of γ_{μ} 's] $=0$, only contributions with n even contribute. For example, for $n=2$

$$
\begin{aligned}
& {\left[\left(K^{-1} M\right)^{2}\right]_{x x}=\frac{1}{(2 m)^{2}} \sum_{\mu, \nu} \sum_{y}\left[\gamma_{\mu} \gamma_{\nu}\right]\left[U_{\mu}(x) \delta_{y, x+\hat{\mu}}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{y, x-\hat{\mu}}\right] } \\
& \times {\left[U_{\nu}(y) \delta_{x, y+\hat{\nu}}-U_{\nu}^{\dagger}(y-\hat{\nu}) \delta_{x, y-\hat{\nu}}\right] . }
\end{aligned}
$$

Extending Martin and Siu

In general the chiral condensate takes the form

$$
\frac{\operatorname{tr}[G(x, x)]}{N_{s} N_{f} d_{R}}=\frac{1}{m} \sum_{L=0}^{\infty}(-1)^{L} \frac{A(L)}{(2 m)^{2 L}}
$$

where $A(L)$ is the contribution of all diagrams with $2 L$ links which start and end at $x=x_{0}$.

A general graph can be built out of irreducible graphs $I(I)$ of $2 I$ links.

Irreducible

Reducible

Irreducible graphs cannot be separated into smaller segments which start and end at x_{0}.

Irreducible diagrams

Irreducible graphs are built iteratively out of all possible combinations of smaller segments attached to a "base diagram" a) \uparrow, or b) —, or

$$
\begin{aligned}
I(1) & =\uparrow=I_{a}(1)=2 d \\
I(2) & =\left\{=I_{a}(2)=2 d\left[I_{a}(1) a_{0}^{\prime}\right]\right. \\
I(3) & =\uparrow+\left\{=I_{a}(3)\right. \\
& =2 d\left[I_{a}(2) a_{0}^{\prime}+I_{a}(1)^{2} a_{0}^{\prime 2}\right]
\end{aligned}
$$

with $a_{0}^{\prime}=\frac{2 d-1}{2 d}$.

Irreducible diagrams

General diagrams

To obtain the contribution of all general diagrams $A(L)$ of a length $2 L$, take all combinations of irreducible bits.

$$
A(L)=\sum_{l=1}^{L} I(I) A(L-I), \quad L \geq 1 ; \quad A(0)=1,
$$ where the irreducible graphs can begin with a) \uparrow, or b) \square, or

$$
I(L)=2 d F_{0}(L-1)-4 d(d-1) \frac{N_{f}}{N_{c}} F_{1}(L-4)^{7}+\ldots
$$

with $I(0)=0 . F_{n}(L)$ represents all possible graphs of length $2 L$ which start and end on a site on a base diagram of area n.

$$
F_{n}(L)=\sum_{\substack{I_{i}=1,2, \ldots, k_{j}=4,8, \ldots, \sum_{i}+k_{j}=L-1}} I_{a}\left(I_{1}\right) I_{a}\left(l_{2}\right) \ldots I_{a}\left(I_{p}\right) I_{b}\left(k_{1}\right) I_{b}\left(k_{2}\right) \ldots I_{b}\left(k_{q}\right) a_{n}^{\prime p} b_{n}^{\prime q},
$$

with $F_{n}(0)=1 . x_{n}^{\prime} \equiv \frac{x_{n}}{d_{x}}$.
For example:

$$
a_{0}^{\prime}=\frac{2 d-1}{2 d}, \quad b_{0}^{\prime}=\frac{4(d-1)^{2}}{4 d(d-1)}
$$

Generating all irreducible graphs

The generating function for irreducible graphs, which gives the total contribution of all irreducible graphs including the mass dependence, is

$$
W_{l}=\sum_{I=0}^{\infty}\left(-\frac{1}{4 m^{2}}\right)^{\prime} I(I)=W_{a}+W_{b}+\ldots
$$

where W_{a} is all irreducible graphs starting with $\Uparrow . W_{b}$ is all irreducible graphs starting with \square, etc. These take the form

$$
\begin{gathered}
W_{a}=2 d x \sum_{n=0}^{\infty}\left[a_{0}^{\prime} W_{a}+b_{0}^{\prime} W_{b}+\ldots\right]^{n}=\frac{2 d x}{1-a_{0}^{\prime} W_{a}-b_{0}^{\prime} W_{b}-\ldots} \\
W_{b}=-4 d(d-1) \frac{N_{f}}{N_{c}} x^{4}\left[\sum_{n=0}^{\infty}\left[a_{1}^{\prime} W_{a}+b_{1}^{\prime} W_{b}+\ldots\right]^{n}\right]^{7}=\frac{-4 d(d-1) \frac{N_{f}}{N_{c}} x^{4}}{\left(1-a_{1}^{\prime} W_{a}-b_{1}^{\prime} W_{b}-\ldots\right)^{7}},
\end{gathered}
$$

with $x \equiv-\frac{1}{4 m^{2}}$. The chiral condensate is then obtained from

$$
\frac{\operatorname{tr}[G(x, x)]}{N_{s} N_{f} N_{c}}=\lim _{m \rightarrow 0} \frac{1}{m}\left(\frac{1}{1-W_{l}}\right) .
$$

Chiral limit $m \rightarrow 0$

To work directly in the massless limit it is convenient to introduce the variables $g_{x} \equiv-\frac{2 m W_{x}}{d_{x}}$,

$$
g \equiv d_{a} g_{a}+d_{b} g_{b}+\ldots
$$

Taking $m \rightarrow 0$, the system of equations

$$
\begin{gathered}
g_{a}=\frac{1}{a_{0} g_{a}+b_{0} g_{b}+\ldots}, \\
g_{b}=\frac{\frac{N_{f}}{N_{c}}}{\left(a_{1} g_{a}+b_{1} g_{b}+\ldots\right)^{7}}, \\
g_{c}=\frac{\frac{N_{f}}{N_{c}}}{\left(a_{2} g_{a}+b_{2} g_{b}+\ldots\right)^{11}},
\end{gathered}
$$

can be solved numerically. The chiral condensate is then obtained from

$$
\frac{\operatorname{tr}[G(x, x)]}{N_{s} N_{f} N_{c}}=\frac{2}{g} .
$$

Calculating fundamental diagrams

To obtain the total contribution of a diagram, one must include the following

- A factor $\frac{1}{i!}\left(-N_{f} N_{s}\right)^{i}$, for a number of overlapping closed internal loops i,
- A mass factor $\left(-\frac{1}{4 m^{2}}\right)^{n}$, for n pairs of links,
- $(-1)^{k}$ for k permutations of γ matrices,
- [...], containing the result obtained by performing the group integrations,
- $\{\ldots\}$, containing the dimensionality of the graph.

Group integrals [Creutz, Cvitanovic]

Group integrals for overlapping links of the form \uparrow, $1 \uparrow \uparrow$ are nonzero $\forall N_{c} \equiv N$.

$$
\int_{S U(N)} \mathrm{d} U U_{a}{ }^{d} U_{c}^{\dagger b}=\frac{1}{N} \delta_{c}^{d} \delta_{a}^{b},
$$

$$
\begin{aligned}
\int_{S U(N)} \mathrm{d} U U_{h}^{\dagger} U_{g}^{\dagger} U_{c}^{f} U_{d}{ }^{e}= & \frac{1}{2 N(N+1)}\left(\delta_{d}^{a} \delta_{c}^{b}+\delta_{c}^{a} \delta_{d}^{b}\right)\left(\delta_{h}^{e} \delta_{g}^{f}+\delta_{g}^{e} \delta_{h}^{f}\right) \\
& +\frac{1}{2 N(N-1)}\left(\delta_{d}^{a} \delta_{c}^{b}-\delta_{c}^{a} \delta_{d}^{b}\right)\left(\delta_{h}^{e} \delta_{g}^{f}-\delta_{g}^{e} \delta_{h}^{f}\right)
\end{aligned}
$$

The group integral of $1 \uparrow$ is nonzero for $S U(3)$

$$
\int_{S U(3)} \mathrm{d} U U_{l}^{j} U_{k}^{\prime} U_{m}^{n}=\frac{1}{6} \epsilon_{i k m} \epsilon^{j / n} .
$$

Fundamental diagrams $L=2,4,6$

$$
\begin{aligned}
& L=2 \\
& \hat{Y}=-\frac{1}{4 m^{2}}\{2 d\} \\
& L=4 \\
& \square=\left(-\frac{1}{4 m^{2}}\right)^{4}(-1)^{2}\left(-N_{f}\right)\left[\frac{1}{N_{c}}\right]\{4 d(d-1)\} \\
& L=6 \\
& \square=\left(-\frac{1}{4 m^{2}}\right)^{6}\left(-N_{f}\right)\left[\frac{1}{N_{c}}\right]\{12 d(d-1)(2 d-3)\}
\end{aligned}
$$

Fundamental diagrams $L=6, N_{c}=3$

$$
\begin{gathered}
\square=\frac{1}{2!}\left(-\frac{1}{4 m^{2}}\right)^{6}(-1)^{3}\left(-N_{f}\right)^{2}\left[\frac{1}{3}\right]\{4 d(d-1)\} \\
\square=\left(-\frac{1}{4 m^{2}}\right)^{6}(-1)^{3}\left(-N_{f}\right)\left[-\frac{1}{3}\right]\{4 d(d-1)\} \\
\square=\left(-\frac{1}{4 m^{2}}\right)^{6}(-1)^{3}\left[\frac{1}{3}\right]\{4 d(d-1)\} \\
\square=\left(-\frac{1}{4 m^{2}}\right)^{6}(-1)^{3}\left(-N_{f}\right)\left[-\frac{1}{3}\right]\{4 d(d-1)\}
\end{gathered}
$$

Fundamental diagrams $L=7,8$
$L=7$
$\square \square=\frac{1}{2!}\left(-\frac{1}{4 m^{2}}\right)^{7}(-1)^{2}\left(-N_{f}\right)^{2}\left[\frac{1}{N_{c}^{2}}\right]\{12 d(d-1)(2 d-3)\}$
$L=8$
$\square=\left(-\frac{1}{4 m^{2}}\right)^{8}(-1)^{2}\left(-N_{f}\right)\left[\frac{1}{N_{c}}\right]\left\{36 d(d-1)(2 d-3)^{2}\right\}$
$\square=\frac{3}{3!}\left(-\frac{1}{4 m^{2}}\right)^{8}(-1)^{4}\left(-N_{f}\right)^{3}\left[\frac{2}{N_{c}}\right]\{4 d(d-1)\}$
$\square=\frac{2}{2!}\left(-\frac{1}{4 m^{2}}\right)^{8}(-1)^{4}\left(-N_{f}\right)^{2}[0]\{4 d(d-1)\}$
$\square=\left(-\frac{1}{4 m^{2}}\right)^{8}(-1)^{4}\left(-N_{f}\right)\left[\frac{2}{N_{c}}\right]\{4 d(d-1)\}$

Fundamental diagrams $L>9$

To obtain diagrams for $L>9$ we need additional group integrals.
For example, to get to $L=16$ for the fundamental and $N_{c}=3$ we would need

$$
\begin{gathered}
\int_{S U(3)} \mathrm{d} U U_{a}{ }^{b} U_{c}{ }^{d} U_{e}^{f} U_{g}{ }^{h} U_{i}^{\dagger j}, \\
\int_{S U(N)} \mathrm{d} U U_{a}^{b} U_{c}{ }^{d} U_{e}^{f} U_{g}^{\dagger h} U_{i}^{\dagger j} U_{k}^{\dagger \prime}, \\
\int_{S U(3)} \mathrm{d} U U_{a}^{b} U_{c}{ }^{d} U_{e}^{f} U_{g}^{h} U_{l}^{j} U_{k}^{\prime}, \\
\int_{S U(3)} \mathrm{d} U U_{a}^{b} U_{c}^{d} U_{e}^{f} U_{g}^{h} U_{l}^{j} U_{k}^{\dagger} U_{m}^{\dagger n}, \\
\int_{S U(N)} \mathrm{d} U U_{a}^{b} U_{c}^{d} U_{e}^{f} U_{g}{ }^{h} U_{i}^{\dagger j} U_{k}^{\dagger} U_{m}^{\dagger} U_{o}^{\dagger p} .
\end{gathered}
$$

Note that each of the three $S U(3)$ integrals can be transformed into one of the $S U(N)$ integrals and Levi-Cevita tensors.

Fundamental diagrams $L>9$

$$
\begin{aligned}
& \int_{S U(3)} \mathrm{d} U U_{a}^{b} U_{c}{ }^{d} U_{e}{ }^{f} U_{g}{ }^{h} U_{i}^{\dagger j}=\frac{1}{2} \epsilon_{g m n}{ }^{h k \mid} \int_{S U(3)} \mathrm{d} U U_{a}^{b} U_{c}{ }^{d} U_{e}{ }^{f} U_{k}^{\dagger m} U_{l}^{\dagger n} U_{i}^{\dagger j}, \\
& \int_{S U(3)} \mathrm{d} U U_{a}{ }^{b} U_{c}{ }^{d} U_{e}{ }^{f} U_{g}{ }^{h} U_{l}^{j} U_{k}{ }^{\prime} \\
& =\frac{1}{4} \epsilon_{i m_{1} n_{1}}{ }^{j a_{1} b_{1} b_{1}} \epsilon_{k m_{2} n_{2}} \varepsilon^{\varepsilon_{2} b_{2}} b_{S} \int_{S U(3)} \mathrm{d} U U_{a}{ }^{b} U_{c}^{d} U_{e}{ }^{f} U_{g}{ }^{h} U_{a 1}^{\dagger m_{1}} U_{b 1}^{\dagger n_{1}} U_{a 2}^{\dagger m_{2}} U_{b 2}^{\dagger n_{2}}, \\
& \int_{S U(3)} \mathrm{d} U U_{a}^{b} U_{c}{ }^{d} U_{e}{ }^{f} U_{g}{ }^{h} U_{l}^{j} U_{k}^{\dagger}{ }^{\dagger} U_{m}^{\dagger} n \\
& =\frac{1}{2} \epsilon_{i a b} e^{j c d} \sqrt{S U(3)} \mathrm{d} U U_{a}{ }^{b} U_{c}{ }^{d} U_{e}{ }^{f} U_{g}{ }^{h} U_{c}^{\dagger a} U_{d}^{\dagger b} U_{k}^{\dagger} U_{m}^{\dagger n} .
\end{aligned}
$$

using [for $S U(3)$]

$$
\begin{aligned}
& U_{i}^{j}=\frac{1}{2} \epsilon_{i m n} \epsilon^{j k l} U_{k}^{\dagger m} U_{l}^{\dagger n}, \\
& U_{i}^{\dagger j}=\frac{1}{2} \epsilon_{i m n} e^{j k l} U_{k}^{m} U_{l}^{n} .
\end{aligned}
$$

PRELIMINARY Results

Chiral condensate (normalised by $\frac{1}{d_{R}}$) for $S U(3)$ including ONLY area $n=0$ and $n=1$ diagrams

Conclusions and outlook

- We calculated the chiral condensate at $g=\infty$ for QCD with N_{f} flavours using a truncated diagrammatic expansion and find that $\langle\bar{\psi} \psi\rangle \neq 0$ at all N_{f}, though it approaches zero as $N_{f} \rightarrow \infty$.
- The expansion appears to converge for area $n=0$ and $n=1$ diagrams
- We calculated group integrals including up to $4 U$'s and $4 U^{\dagger}$'s using the technique of Young projectors, which can be used to calculate diagrams up to $L=8$ in the fundamental and $L=4$ in the adjoint, symmetric, and antisymmetric.
- Area $n>1$ diagrams have been calculated up to $L=8$ but still need to be included in the calculation of the chiral condensate.

Backup slides

Issue: "diagram overlap problem"

More often than not, overlapping diagrams with nonzero area $(n>0)$ are miscounted.
$L=8$
$\square \frac{\square}{2!}\left(-\frac{1}{4 m^{2}}\right)^{16}(-1)^{4}\left(-N_{f}\right)^{2}[0]$,
however, it gets counted as

$$
\left(-\frac{1}{4 m^{2}}\right)^{16}(-1)^{4}\left(-N_{f}\right)^{2}\left[\frac{1}{N_{c}^{2}}\right]
$$

Issue: "diagram overlap problem"

$L=12$

for $N_{c} \geq 3$. For $N_{c}=2$ the result is $\left(-\frac{1}{4 m^{2}}\right)^{24}(-1)^{6}\left(-N_{f}\right)^{3}\left[-\frac{1}{2}\right]$.
In either case it gets counted as

$$
\left(-\frac{1}{4 m^{2}}\right)^{24}(-1)^{6}\left(-N_{f}\right)^{3}\left[\frac{1}{N_{c}^{3}}\right]
$$

One can account for mis-counting at each order in L in which it appears (starting at $L=8$).

Group integration with Young Projectors

All integrals we need can be converted to the form

$$
\int_{S U(N)} \mathrm{d} U U_{\alpha_{1}}{ }^{\beta_{1}} \ldots U_{\alpha_{n}}{ }^{\beta_{n}}\left(U^{\dagger}\right)_{\gamma_{1}}{ }^{\delta_{1}} \ldots\left(U^{\dagger}\right)_{\gamma_{n}}{ }^{\delta_{n}}
$$

Calculating the direct product of $n U^{\prime} s\left(U^{\dagger}\right.$'s) leads to a direct sum of representations $R(S)$.

The integral can be obtained from the Young Projectors \mathbb{P} of these representations using

$$
\int_{S U(N)} \mathrm{d} U R_{a}{ }^{b}\left(S^{\dagger}\right)_{c}{ }^{d}=\frac{1}{d_{R}}\left(\mathbb{P}^{R}\right)_{a}^{d}\left(\mathbb{P}^{S}\right)_{c}{ }^{b} \delta_{R S}
$$

Young projectors \mathbb{P}

Consider for example the integral

$$
I_{2} \equiv \int_{\operatorname{SU}(N)} d U U_{\alpha_{1}}^{\beta_{1}} U_{\alpha_{2}}^{\beta_{2}}\left(U^{\dagger}\right)_{\gamma_{1}}^{\delta_{1}}\left(U^{\dagger}\right)_{\gamma_{2}}^{\delta_{2}}
$$

The direct product $\mathbf{N} \otimes \mathbf{N}$ is

$$
\boxed{\alpha_{1}} \otimes \alpha_{2}=\begin{array}{|c|c|}
\alpha_{1} & \alpha_{2}
\end{array} \frac{\alpha_{1}}{\alpha_{2}} .
$$

The Young projectors are thus formed by symmetrising, and antisymmetrising in α_{1} and α_{2},
$\mathbb{P}_{\alpha_{1} \alpha_{2}}^{S}{ }^{\beta_{1} \beta_{2}}=\frac{1}{2}\left(\delta_{\alpha_{1}}^{\beta_{1}} \delta_{\alpha_{2}}^{\beta_{2}}+\delta_{\alpha_{1}}^{\beta_{2}} \delta_{\alpha_{2}}^{\beta_{1}}\right), \quad \mathbb{P}_{\alpha_{1} \alpha_{2}}^{A S}{ }^{\beta_{1} \beta_{2}}=\frac{1}{2}\left(\delta_{\alpha_{1}}^{\beta_{1}} \delta_{\alpha_{2}}^{\beta_{2}}-\delta_{\alpha_{1}}^{\beta_{2}} \delta_{\alpha_{2}}^{\beta_{1}}\right)$.
The resulting integral is

$$
I_{2}=\frac{2}{N(N+1)} \mathbb{P}_{\alpha_{1} \alpha_{2}}^{S} \delta_{1} \delta_{2} \mathbb{P}_{\gamma_{1} \gamma_{2}}^{S} \beta_{1} \beta_{2}+\frac{2}{N(N-1)} \mathbb{P}_{\alpha_{1} \alpha_{2}}^{A S} \delta_{1} \delta_{2} \mathbb{P}_{\gamma_{1} \gamma_{2}}^{A S} \beta_{1} \beta_{2}
$$

Additional group integrals

$$
I_{3} \equiv \int_{\operatorname{SU}(N)} d U U_{\alpha_{1}}{ }^{\beta_{1}} U_{\alpha_{2}}{ }^{\beta_{2}} U_{\alpha_{3}}{ }^{\beta_{3}}\left(U^{\dagger}\right)_{\gamma_{1}}{ }^{\delta_{1}}\left(U^{\dagger}\right)_{\gamma_{2}}{ }^{\delta_{2}}\left(U^{\dagger}\right)_{\gamma_{3}}{ }^{\delta_{3}}
$$

with group decomposition
results in
$I_{3}=$
$\underset{N(N+1)(N+2)}{6} \mathbb{P}_{\alpha_{1} \alpha_{2} \alpha_{3}}^{S}{ }^{\delta_{1} \delta_{2} \delta_{3}} \mathbb{P}_{\gamma_{1} \gamma_{2} \gamma_{3}}^{S}{ }^{\beta_{1} \beta_{2} \beta_{3}}+\frac{3}{N\left(N^{2}-1\right)} \mathbb{P}_{\alpha_{1} \alpha_{2} \alpha_{3}}^{M}{ }^{\delta_{1} \delta_{2} \delta_{3}} \mathbb{P}_{\gamma_{1} \gamma_{2} \gamma_{3}}^{M}{ }_{\beta_{1} \beta_{2} \beta_{3}}$
$+\frac{3}{N\left(N^{2}-1\right)} \mathbb{P}_{\alpha_{1} \alpha_{2} \alpha_{3}}^{\tilde{M}} \delta_{1} \delta_{2} \delta_{3} \mathbb{P}_{\gamma_{1} \gamma_{2} \gamma_{3}}^{\tilde{\beta_{1}} \beta_{2} \beta_{3}}+\frac{3}{N\left(N^{2}-1\right)} \mathbb{P}_{\alpha_{1} \alpha_{2} \alpha_{3}}^{M} \delta_{1} \delta_{3} \delta_{2} \mathbb{P}_{\gamma_{1} \gamma_{2} \gamma_{3}}^{\tilde{M}}{ }_{\beta_{1} \beta_{3} \beta_{2}}$
$+\frac{3}{N\left(N^{2}-1\right)} \mathbb{P}_{\alpha_{1} \alpha_{2} \alpha_{3}}^{\tilde{M}}{ }_{1} \delta_{3} \delta_{2} \mathbb{P}_{\gamma_{1} \gamma_{2} \gamma_{3}}^{M} \beta_{1} \beta_{3} \beta_{2}+\frac{6}{N(N-1)(N-2)} \mathbb{P}_{\alpha_{1} \alpha_{2} \alpha_{3}}^{A S} \delta_{1} \delta_{2} \delta_{3} \mathbb{P}_{\gamma_{1} \gamma_{2} \gamma_{3}}^{A S}{ }_{\beta_{1} \beta_{2} \beta_{3}}$

Higher dimensional representations

Higher dimensional representations can be written in terms of the fundamental and anti-fundamental. For example,

Symmetric

$$
\begin{aligned}
\left(U^{S}\right)_{a}^{b}=\left(U^{S}\right)_{\left(\alpha_{1} \alpha_{2}\right)}{ }^{\left(\beta_{1} \beta_{2}\right)} & =\left(\mathbb{P}^{S}\right)_{\alpha_{1} \alpha_{2}}{ }^{\gamma_{1} \gamma_{2}} U_{\gamma_{1}}{ }^{\delta_{1}} U_{\gamma_{2}}{ }^{\delta_{2}}\left(\mathbb{P}^{S}\right)_{\delta_{1} \delta_{2}}{ }^{\beta_{1} \beta_{2}} \\
& =\frac{1}{2}\left(U_{\alpha_{1}}{ }^{\beta_{1}} U_{\alpha_{2}}{ }^{\beta_{2}}+U_{\alpha_{1}}{ }^{\beta_{2}} U_{\alpha_{2}}{ }^{\beta_{1}}\right)
\end{aligned}
$$

$a, b=1, \ldots, d_{s}$.
Antisymmetric

$$
\begin{aligned}
\left(U^{A S}\right)_{m}^{n}=\left(U^{A S}\right)_{\left[\alpha_{1} \alpha_{2}\right]}^{\left[\beta_{1} \beta_{2}\right]} & =\left(\mathbb{P}^{A S}\right)_{\alpha_{1} \alpha_{2}}{ }^{\gamma_{1} \gamma_{2}} U_{\gamma_{1}}^{\delta_{1}} U_{\gamma_{2}}^{\delta_{2}}\left(\mathbb{P}^{A S}\right)_{\delta_{1} \delta_{2}}{ }^{\beta_{1} \beta_{2}} \\
& =\frac{1}{2}\left(U_{\alpha_{1}}{ }^{\beta_{1}} U_{\alpha_{2}}{ }^{\beta_{2}}-U_{\alpha_{1}}^{\beta_{2}} U_{\alpha_{2}}{ }^{\beta_{1}}\right)
\end{aligned}
$$

$m, n=1, \ldots, d_{A S}$.

Higher dimensional representations

Adjoint

$$
\left(U^{A}\right)_{a}^{b}=2 \operatorname{Tr}\left(U t_{a} U^{\dagger} t^{b}\right)
$$

where the t_{a} are fundamental generators of $S U(N)$ satisfying

$$
\operatorname{Tr}\left(t_{a} t_{b}\right)=\frac{1}{2} \delta_{a b} .
$$

At leading order it is sufficient to use

$$
\begin{aligned}
& \int_{S U(N)} \mathrm{d} U\left(U^{R}\right)_{a}^{b}\left(U^{R \dagger}\right)_{c}^{d}=\frac{1}{d_{R}} \delta_{a}^{d} \delta_{c}^{b} . \\
& \int_{S U(N)} \mathrm{d} U\left(U^{A}\right)_{a}^{b}\left(U^{A}\right)_{c}{ }^{d}=\frac{1}{d_{A}} \delta_{a c} \delta^{b d} .
\end{aligned}
$$

At the next order in the adjoint it is necessary to consider 3-link integrals.

3-link adjoint integrals

We are interested in integrals of the form

$$
\begin{aligned}
& I_{n}^{A} \equiv \int d U U_{a_{1}}^{b_{1}} \cdots U_{a_{n}}{ }^{b_{n}} \\
& =2^{n}\left(t_{a_{1}}\right)_{\beta_{1}}^{\gamma_{1}}\left(t^{b_{1}}\right)_{\delta_{1}}^{\alpha_{1}} \cdots\left(t_{a_{n}}\right)_{\beta_{n}}^{\gamma_{n}}\left(t_{b_{n}}\right)_{\delta_{n}}^{\alpha_{n}} \int d U U_{\alpha_{1}}^{\beta_{1}} \cdots U_{\alpha_{n}}^{\beta_{n}} U_{\gamma_{1}}^{\dagger} \delta_{1} \cdots U_{\gamma_{n}}^{\dagger \delta_{n}}
\end{aligned}
$$

For example, for $n=3$, plugging in the result for the fundamental integral and simplifying using the identity

$$
t_{a} t_{b}=\frac{1}{2 N} \delta_{a b} \mathbf{1}_{N}+\frac{1}{2} d_{a b c} t_{c}+\frac{i}{2} f_{a b c} t_{c}
$$

results in

$$
I_{3}^{A}=\frac{N}{\left(N^{2}-1\right)\left(N^{2}-4\right)} d_{a_{1} a_{2} a_{3}} d^{b_{1} b_{2} b_{3}}+\frac{1}{N\left(N^{2}-1\right)} f_{a_{1} a_{2} a_{3}} f^{b_{1} b_{2} b_{3}} .
$$

where

$$
\begin{aligned}
i f_{a b c} & =2 \operatorname{Tr}\left(\left[t_{a}, t_{b}\right] t_{c}\right) \\
d_{a b c} & =2 \operatorname{Tr}\left(\left\{t_{a}, t_{b}\right\} t_{c}\right) .
\end{aligned}
$$

Bars and Green integrals [Bars and Green 1979]

Bars and Green calculate integrals of the form

$$
\begin{aligned}
& F_{n} \equiv \int_{S U(N)} \mathrm{d} U[\operatorname{tr}(A U)]^{n}\left[\operatorname{tr}\left(A^{\dagger} U^{\dagger}\right)\right]^{n} \\
& =\sum_{\substack{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}, k_{1}, \ldots, k_{n}, l_{1}, \ldots, l_{n}}} A_{i_{1}}^{j_{1}} \ldots A_{i_{n}}^{j_{n}}\left(A^{\dagger}\right)_{k_{1}}{ }^{I_{1}} \ldots\left(A^{\dagger}\right)_{k_{n}}^{I_{n}} \int_{\operatorname{SU}(N)} \mathrm{d} U U_{j_{1}}^{i_{1}} \ldots U_{j_{n}}^{i_{n}}\left(U^{\dagger}\right)_{1_{1}}{ }^{k_{1}} \ldots\left(U^{\dagger}\right)_{I_{n}}{ }^{k_{n}}
\end{aligned}
$$

This integral is a generating function for the types of integrals we are interested in.

One can obtain our integrals by separating out the $A_{i_{1}}{ }^{j_{1}} \cdots A_{i_{n}}{ }^{j_{n}}\left(A^{\dagger}\right)_{k_{1}}{ }_{1} \cdots\left(A^{\dagger}\right)_{k_{n}}{ }^{I_{n}}$ from each term in the results of [Bars and Green 1979], followed by symmetrising all of the i, j pairs, and k, l pairs.

The benefit of the Young projector technique is that the coefficients of each term are easier to determine. We have checked our results against Bars and Green up to $n=4$.

