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Introduction: 〈ψ̄ψ〉 at g =∞
For Nf = 0

〈ψ̄ψ〉 6= 0 .

What happens as Nf is increased?
Could the chiral symmetry be restored as we see from simulations at more
moderate coupling strengths?

Using a 1/d expansion to calculate 〈ψ̄ψ〉 analytically [Kluberg-Stern,
Morel, Petersson 1982] find that there is no phase transition to a
phase in which 〈ψ̄ψ〉 = 0 for any Nf

A mean field analysis based on [Damgaard, Hochberg, Kawamoto
1985] also suggests that the critical temperature Tc 6= 0 for all Nf

Using Monte-Carlo simulations [de Forcrand, Kim, Unger 2013] find
that a transition does occur, around Nf ∼ 13 staggered fermion
flavours
Using a diagrammatic approach [Tomboulis 2013] also finds that a
transition occurs, around Nf ∼ 10.7 staggered flavours
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Simulation results [de Forcrand, Kim, Unger 2013]
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Leading order strong coupling expansion [Tomboulis 2013]
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〈ψ̄ψ〉 = − lim
m→0

trG

trG =

[
m −
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4d2(d − 1)

Nf

Nc

(
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)9

− d

(
g(m)

2

))]−1

g(m) =

[
m −

(
4d2(d − 1)

Nf

Nc

(
g(m)

2

)9

−
(

2d − 1

2

)(
g(m)

2

))]−1
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Calculating the chiral condensate
[Blairon, Brout, Englert and Greensite (1981); Martin and Siu (1983); Tomboulis (2013)]

The chiral condensate is obtained from

〈ψ̄(x)ψ(x)〉 = −tr [G (x , x)] = − 1

Nf
∂m logZ .

Integrating out the fermion contribution results in

G (x , x) =

∫
DU det

[
1 + K−1M(U)

] [[
1 + K−1M(U)

]−1
K−1

]
xx∫

DU det [1 + K−1M(U)]
,

with

Mxy ≡
1

2

[
γµUµ(x)δy ,x+µ̂ − γµU†µ(x − µ̂)δy ,x−µ̂

]
,

K−1xy = m−1INf
INc δxy .

The K−1 ∼ 1
m suggests performing a hopping expansion.
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Hopping expansion
Performing a hopping expansion on the fermion determinant leads to

det
[
1 + K−1M

]
= exp tr

[ ∞∑
n=1

(−1)n+1

n
(K−1M)n

]
,

which is a sum over closed loops.

Performing a hopping expansion on the contribution from the 2-pt
correlator results in[[

1 + K−1M
]−1

K−1
]
xx

=
1

m

[ ∞∑
n=0

(−1)n(K−1M)n

]
xx

.

which contains all loops that begin and end at site x .

Since tr [odd # of γµ’s] = 0, only contributions with n even contribute.
For example, for n = 2[

(K−1M)2
]
xx

=
1

(2m)2

∑
µ,ν

∑
y

[γµγν ]
[
Uµ(x)δy ,x+µ̂ − U†µ(x − µ̂)δy ,x−µ̂

]
×
[
Uν(y)δx,y+ν̂ − U†ν(y − ν̂)δx,y−ν̂

]
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Extending Martin and Siu
In general the chiral condensate takes the form

tr[G (x , x)]

NsNf dR
=

1

m

∞∑
L=0

(−1)L
A(L)

(2m)2L
,

where A(L) is the contribution of all diagrams with 2L links which start
and end at x = x0.

A general graph can be built out of irreducible graphs I (l) of 2l links.

x0

Irreducible

x0

Reducible
Irreducible graphs
cannot be separated
into smaller segments
which start and end
at x0.
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Irreducible diagrams
Irreducible graphs are built iteratively out of all possible combinations of

smaller segments attached to a “base diagram” a) , or b) , or ... .

I (1) = = Ia(1) = 2d

I (2) = = Ia(2) = 2d [Ia(1) a′0]

I (3) = + = Ia(3)

= 2d
[
Ia(2)a′0 + Ia(1)2a′20

]
with a′0 = 2d−1

2d .
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Irreducible diagrams

I (4) = + + 2

+ +

= Ia(4) + Ib(4)

= 2d [Ia(3)a′0 + 2Ia(1)Ia(2)a′20 + Ia(1)3a′30 ]− 4d(d − 1)Nf

Nc

...
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General diagrams
To obtain the contribution of all general diagrams A(L) of a length 2L,
take all combinations of irreducible bits.

A(L) =
L∑

l=1

I (l)A(L− l) , L ≥ 1 ; A(0) = 1 ,

where the irreducible graphs can begin with a) , or b) , or ... .

I (L) = 2dF0(L− 1)− 4d(d − 1)
Nf

Nc
F1(L− 4)7 + ... .

with I (0) = 0. Fn(L) represents all possible graphs of length 2L which
start and end on a site on a base diagram of area n.

Fn(L) =
∑

li=1,2,...,
kj=4,8,...,∑
li+kj=L−1

Ia(l1)Ia(l2)...Ia(lp)Ib(k1)Ib(k2)...Ib(kq)a′pn b
′q
n ,

with Fn(0) = 1. x ′n ≡ xn
dx

.

For example: a′0 =
2d − 1

2d
, b′0 =

4(d − 1)2

4d(d − 1)
.
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Generating all irreducible graphs
The generating function for irreducible graphs, which gives the total
contribution of all irreducible graphs including the mass dependence, is

WI =
∞∑
l=0

(
− 1

4m2

)l

I (l) = Wa + Wb + ... ,

where Wa is all irreducible graphs starting with . Wb is all irreducible

graphs starting with , etc. These take the form

Wa = 2dx
∞∑
n=0

[a′0Wa + b′0Wb + ...]
n

=
2dx

1− a′0Wa − b′0Wb − ...
,

Wb = −4d(d−1)
Nf

Nc
x4

[ ∞∑
n=0

[a′1Wa + b′1Wb + ...]
n

]7
=

−4d(d − 1)Nf

Nc
x4

(1− a′1Wa − b′1Wb − ...)7
,

... .

with x ≡ − 1
4m2 . The chiral condensate is then obtained from

tr[G (x , x)]

NsNfNc
= lim

m→0

1

m

(
1

1−WI

)
.
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Chiral limit m→ 0
To work directly in the massless limit it is convenient to introduce the
variables gx ≡ −2mWx

dx
,

g ≡ daga + dbgb + ... .

Taking m→ 0, the system of equations

ga =
1

a0ga + b0gb + ...
,

gb =

Nf
Nc

(a1ga + b1gb + ...)7
,

gc =

Nf
Nc

(a2ga + b2gb + ...)11
,

... ,

can be solved numerically. The chiral condensate is then obtained from

tr[G (x , x)]

NsNfNc
=

2

g
.
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Calculating fundamental diagrams

To obtain the total contribution of a diagram, one must include the
following

A factor 1
i!(−NfNs)i , for a number of overlapping closed internal

loops i ,

A mass factor
(
− 1

4m2

)n
, for n pairs of links,

(−1)k for k permutations of γ matrices,

[...], containing the result obtained by performing the group
integrations,

{...}, containing the dimensionality of the graph.
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Group integrals [Creutz, Cvitanovic]

Group integrals for overlapping links of the form ,
are nonzero ∀Nc ≡ N.∫

SU(N)
dU Ua

dU†c
b =

1

N
δdc δ

b
a ,

∫
SU(N)

dU U†h
aU†g

bUc
f Ud

e =
1

2N(N + 1)

(
δadδ

b
c + δacδ

b
d

)(
δehδ

f
g + δegδ

f
h

)
+

1

2N(N − 1)

(
δadδ

b
c − δacδbd

)(
δehδ

f
g − δegδfh

)
.

The group integral of is nonzero for SU(3)∫
SU(3)

dU Ui
jUk

lUm
n =

1

6
εikmε

jln .
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Fundamental diagrams L = 2, 4, 6

L = 2

= − 1
4m2{2d}

L = 4

=
(
− 1

4m2

)4
(−1)2(−Nf )

[
1
Nc

]
{4d(d − 1)}

L = 6

=
(
− 1

4m2

)6
(−Nf )

[
1
Nc

]
{12d(d − 1)(2d − 3)}
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Fundamental diagrams L = 6, Nc = 3

= 1
2!

(
− 1

4m2

)6
(−1)3(−Nf )2

[
1
3

]
{4d(d − 1)}

=
(
− 1

4m2

)6
(−1)3(−Nf )

[
−1

3

]
{4d(d − 1)}

=
(
− 1

4m2

)6
(−1)3

[
1
3

]
{4d(d − 1)}

=
(
− 1

4m2

)6
(−1)3(−Nf )

[
−1

3

]
{4d(d − 1)}
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Fundamental diagrams L = 7, 8
L = 7

= 1
2!

(
− 1

4m2

)7
(−1)2(−Nf )2

[
1
N2
c

]
{12d(d − 1)(2d − 3)}

L = 8

=
(
− 1

4m2

)8
(−1)2(−Nf )

[
1
Nc

]
{36d(d − 1)(2d − 3)2}

= 3
3!

(
− 1

4m2

)8
(−1)4(−Nf )3

[
2
Nc

]
{4d(d − 1)}

= 2
2!

(
− 1

4m2

)8
(−1)4(−Nf )2 [0] {4d(d − 1)}

=
(
− 1

4m2

)8
(−1)4(−Nf )

[
2
Nc

]
{4d(d − 1)}
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Fundamental diagrams L > 9
To obtain diagrams for L > 9 we need additional group integrals.

For example, to get to L = 16 for the fundamental and Nc = 3 we would
need ∫

SU(3)
dU Ua

bUc
dUe

f Ug
hU†i

j ,∫
SU(N)

dU Ua
bUc

dUe
f U†g

hU†i
jU†k

l ,∫
SU(3)

dU Ua
bUc

dUe
f Ug

hUi
jUk

l ,∫
SU(3)

dU Ua
bUc

dUe
f Ug

hUi
jU†k

lU†m
n ,∫

SU(N)
dU Ua

bUc
dUe

f Ug
hU†i

jU†k
lU†m

nU†o
p .

Note that each of the three SU(3) integrals can be transformed into one
of the SU(N) integrals and Levi-Cevita tensors.
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Fundamental diagrams L > 9

∫
SU(3)

dU Ua
bUc

dUe
fUg

hU†i
j =

1

2
εgmnε

hkl

∫
SU(3)

dU Ua
bUc

dUe
fU†mk U†nl U†i

j ,

∫
SU(3)

dU Ua
bUc

dUe
fUg

hUi
jUk

l

=
1

4
εim1n1ε

ja1b1εkm2n2ε
la2b2

∫
SU(3)

dU Ua
bUc

dUe
fUg

hU†m1

a1 U†n1b1 U†m2

a2 U†n2b2 ,∫
SU(3)

dU Ua
bUc

dUe
fUg

hUi
jU†k

lU†m
n

=
1

2
εiabε

jcd

∫
SU(3)

dU Ua
bUc

dUe
fUg

hU†ac U†bd U†k
lU†m

n .

using [for SU(3)]

Ui
j =

1

2
εimnε

jklU†mk U†nl ,

U†ji =
1

2
εimnε

jklUk
mUl

n .
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PRELIMINARY Results
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Conclusions and outlook

We calculated the chiral condensate at g =∞ for QCD with Nf

flavours using a truncated diagrammatic expansion and find that
〈ψ̄ψ〉 6= 0 at all Nf , though it approaches zero as Nf →∞.

The expansion appears to converge for area n = 0 and n = 1 diagrams

We calculated group integrals including up to 4 U’s and 4 U†’s using
the technique of Young projectors, which can be used to calculate
diagrams up to L = 8 in the fundamental and L = 4 in the adjoint,
symmetric, and antisymmetric.

Area n > 1 diagrams have been calculated up to L = 8 but still need
to be included in the calculation of the chiral condensate.
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Backup slides
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Issue: “diagram overlap problem”

More often than not, overlapping diagrams with nonzero area (n > 0) are
miscounted.

L = 8

=
1

2!

(
− 1

4m2

)16
(−1)4(−Nf )2 [0] ,

however, it gets counted as(
− 1

4m2

)16

(−1)4(−Nf )2
[

1

N2
c

]
.
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Issue: “diagram overlap problem”

L = 12

=
(
− 1

4m2

)24
(−1)6(−Nf )3 [0] ,

for Nc ≥ 3. For Nc = 2 the result is
(
− 1

4m2

)24
(−1)6(−Nf )3

[
−1

2

]
.

In either case it gets counted as(
− 1

4m2

)24

(−1)6(−Nf )3
[

1

N3
c

]
.

One can account for mis-counting at each order
in L in which it appears (starting at L = 8).
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Group integration with Young Projectors

All integrals we need can be converted to the form∫
SU(N)

dU Uα1
β1 ...Uαn

βn(U†)γ1
δ1 ...(U†)γn

δn

Calculating the direct product of n U’s (U†’s) leads to a direct sum of
representations R (S).

The integral can be obtained from the Young Projectors P of these
representations using∫

SU(N)
dU Ra

b(S†)c
d =

1

dR
(PR)a

d(PS)c
b δRS .
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Young projectors P
Consider for example the integral

I2 ≡
∫
SU(N)

dU Uα1
β1Uα2

β2(U†)γ1
δ1(U†)γ2

δ2 .

The direct product N⊗N is

α1 ⊗ α2 = α1 α2 ⊕
α1

α2
.

The Young projectors are thus formed by symmetrising, and
antisymmetrising in α1 and α2,

PS
α1α2

β1β2 =
1

2

(
δβ1α1

δβ2α2
+ δβ2α1

δβ1α2

)
, PAS

α1α2

β1β2 =
1

2

(
δβ1α1

δβ2α2
− δβ2α1

δβ1α2

)
.

The resulting integral is

I2 =
2

N(N + 1)
PS
α1α2

δ1δ2PS
γ1γ2

β1β2 +
2

N(N − 1)
PAS
α1α2

δ1δ2PAS
γ1γ2

β1β2 .
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Additional group integrals

I3 ≡
∫
SU(N)

dU Uα1
β1Uα2

β2Uα3
β3(U†)γ1

δ1(U†)γ2
δ2(U†)γ3

δ3 .

with group decomposition

α1 ⊗ α2 ⊗ α3 = α1 α2 α3 (S)⊕ α1 α2

α3
(M)⊕ α1 α3

α2
(M̃)⊕

α1

α2

α3

(AS) ,

results in

I3 =

6
N(N+1)(N+2)P

S
α1α2α3

δ1δ2δ3PS
γ1γ2γ3

β1β2β3 + 3
N(N2−1)P

M
α1α2α3

δ1δ2δ3PM
γ1γ2γ3

β1β2β3

+ 3
N(N2−1)P

M̃
α1α2α3

δ1δ2δ3PM̃
γ1γ2γ3

β1β2β3 + 3
N(N2−1)P

M
α1α2α3

δ1δ3δ2PM̃
γ1γ2γ3

β1β3β2

+ 3
N(N2−1)P

M̃
α1α2α3

δ1δ3δ2PM
γ1γ2γ3

β1β3β2 + 6
N(N−1)(N−2)P

AS
α1α2α3

δ1δ2δ3PAS
γ1γ2γ3

β1β2β3 .
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Higher dimensional representations

Higher dimensional representations can be written in terms of the
fundamental and anti-fundamental. For example,

Symmetric

(US)a
b = (US)(α1α2)

(β1β2) = (PS)α1α2
γ1γ2Uγ1

δ1Uγ2
δ2(PS)δ1δ2

β1β2

=
1

2

(
Uα1

β1Uα2
β2 + Uα1

β2Uα2
β1
)

a, b = 1, ..., dS .

Antisymmetric

(UAS)m
n = (UAS)[α1α2]

[β1β2] = (PAS)α1α2
γ1γ2Uγ1

δ1Uγ2
δ2(PAS)δ1δ2

β1β2

=
1

2

(
Uα1

β1Uα2
β2 − Uα1

β2Uα2
β1
)

m, n = 1, ..., dAS .
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Higher dimensional representations

Adjoint

(UA)a
b = 2Tr

(
UtaU

†tb
)
,

where the ta are fundamental generators of SU(N) satisfying

Tr (tatb) =
1

2
δab .

At leading order it is sufficient to use∫
SU(N)

dU (UR)a
b(UR†)c

d =
1

dR
δa

dδc
b .

∫
SU(N)

dU (UA)a
b(UA)c

d =
1

dA
δacδ

bd .

At the next order in the adjoint it is necessary to consider 3-link integrals.
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3-link adjoint integrals
We are interested in integrals of the form

IAn ≡
∫

dU Ua1
b1 · · ·Uan

bn

= 2n (ta1)β1

γ1(tb1)δ1
α1 · · · (tan)βn

γn(tbn)δn
αn

∫
dU Uα1

β1 · · ·Uαn

βnU†γ1
δ1 · · ·U†γnδn

For example, for n = 3, plugging in the result for the fundamental integral
and simplifying using the identity

tatb =
1

2N
δab1N +

1

2
dabctc +

i

2
fabctc ,

results in

IA3 =
N

(N2 − 1)(N2 − 4)
da1a2a3d

b1b2b3 +
1

N(N2 − 1)
fa1a2a3f

b1b2b3 .

where

ifabc = 2Tr ([ta, tb]tc) ,

dabc = 2Tr ({ta, tb}tc) .
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Bars and Green integrals [Bars and Green 1979]
Bars and Green calculate integrals of the form

Fn ≡
∫
SU(N)

dU [tr(AU)]n[tr(A†U†)]n

=
∑

i1,...,in,
j1,...,jn,
k1,...,kn,
l1,...,ln

Ai1
j1 ...Ain

jn(A†)k1
l1 ...(A†)kn

ln

∫
SU(N)

dU Uj1
i1 ...Ujn

in(U†)l1
k1 ...(U†)ln

kn

This integral is a generating function for the types of integrals we are
interested in.

One can obtain our integrals by separating out the
Ai1

j1 · · ·Ain
jn(A†)k1

l1 · · · (A†)kn ln from each term in the results of [Bars and
Green 1979], followed by symmetrising all of the i ,j pairs, and k ,l pairs.

The benefit of the Young projector technique is that the coefficients of
each term are easier to determine. We have checked our results against
Bars and Green up to n = 4. 32


