

Nucleon spectroscopy using multi-particle operators

Waseem Kamleh

Collaborators Derek Leinweber, Adrian Kiratidis

32nd International Symposium on Lattice Field Theory (New York)², June 23-28, 2014

- Want to "predict" nucleon spectrum from lattice QCD.
- Understand excited state structure e.g. Roper P₁₁(1440)
 - Quark model: N = 2 radial excitation of the nucleon.
 - Much lower in mass than simple quark model predictions.
 - Lighter than N = 1 radial excitation of the nucleon, the negative parity $S_{11}(1535)$.
- How can we access the excited state spectrum on the lattice?

Variational Method

• Construct an *n* × *n* correlation matrix,

$$G_{ij}(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle \Omega | T\{\chi_i(x)\bar{\chi}_j(0)\} | \Omega \rangle.$$

• Solve a generalised eigenproblem to find the linear combination of interpolating fields,

$$\bar{\phi}^{\alpha} = \sum_{i=1}^{N} u_i^{\alpha} \,\bar{\chi}_i, \qquad \phi^{\alpha} = \sum_{i=1}^{N} v_i^{\alpha} \,\chi_i$$

such that the correlation matrix is diagonalised,

$$v_i^{\alpha}G_{ij}(t)u_j^{\beta}=\delta^{\alpha\beta}z^{\alpha}\bar{z}^{\beta}e^{-m_{\alpha}t}.$$

Eigenstate-Projected Correlators

• The left and right vectors are used to define the eigenstate-projected correlators

$$v_i^{lpha}G_{ij}^{\pm}(t)u_j^{lpha}\equiv G_{\pm}^{lpha}(t).$$

- If the operator basis is incomplete, G^α_±(t) may contain mixture of two or more states.
- Effective masses of different states are then analysed from the eigenstate-projected correlators in the usual way.
 - Careful χ^2 analysis to fit single-state ansatz ensures a robust extraction of eigenstate energies,

$$G^{\alpha}_{\pm}(t) = \lambda_{\alpha} \bar{\lambda}_{\alpha} e^{-E_{\alpha}t}.$$

Operator Basis

Consider the nucleon interpolators,

$$\begin{split} \chi_1(x) &= \epsilon^{abc}(u^{Ta}(x) \, C\gamma_5 \, d^b(x)) \, u^c(x) \,, \\ \chi_2(x) &= \epsilon^{abc}(u^{Ta}(x) \, C \, d^b(x)) \, \gamma_5 \, u^c(x) \,, \\ \chi_4(x) &= \epsilon^{abc}(u^{Ta}(x) \, C\gamma_5\gamma_4 \, d^b(x)) \, u^c(x) \end{split}$$

- Not able to access the Roper using χ_1, χ_2 (or χ_4) alone.
 - Contrary to historical thought, Roper does not couple to χ₂.
- Can expand any radial function using a basis of Gaussians of different widths

$$f(|\vec{r}|) = \sum_{i} c_{i} e^{-\varepsilon_{i} r^{2}}.$$

Operator Basis

- Solution: Use different levels of gauge-invariant quark smearing to expand the operator basis.
 - Phys.Lett. B707 (2012) 389-393, "Roper Resonance in 2+1 Flavor QCD"
 - Variational basis highly suited to access radial excitations.
 - Combined 8 × 8 correlation matrix analysis using χ_1, χ_2 and χ_1, χ_4 with 4 different smearings (n = 16, 35, 100, 200).
 - RMS radii of 2.37, 3.50, 5.92 and 8.55 lattice units.
- PACS-CS Configs (via ILDG)
 - S. Aoki, et al., Phys. Rev. **D79** (2009) 034503.
 - 2 + 1 flavour dynamical-fermion QCD
 - Lattice volume: 32³ × 64
 - a = 0.0907 fm, $\sim (2.9 \text{ fm})^3$
 - *m*_π = { 156, 293, 413, 572, 702 } MeV

N⁺ spectrum

Hydrogen S states

Nucleon correlator

• Euclidean time evolution removes any remnant of higher excited state contamination due to incomplete basis.

Nucleon correlator

• Euclidean time evolution removes any remnant of higher excited state contamination due to incomplete basis.

N- spectrum

M. S. Mahbub et al. [CSSM Lattice Collaboration], Phys. Rev. D 87, 011501 (2013).

Two-state mixing

M. S. Mahbub, W. Kamleh, D. B. Leinweber and A. G. Williams, Annals Phys. 342, 270 (2014)

- Two-state fit in negative parity sector reveals mixing.
 - 3-quark operators provide no prediction for lower state.
 - Careful analysis ensures higher state fit is essentially unaffected.
- What if the Roper has a large 5-quark component?
 - Dynamical gauge fields can create $q\bar{q}$ from glue.
- What role do 5-quark operators play?

5-quark operators

 Take χ₁ and χ₂ operators and couple a π via Clebsch-Gordan coefficients to get N[±]₁ quantum numbers:

$$\chi_1 + \pi \to \chi_5$$
$$\chi_2 + \pi \to \chi'_5$$

Use stochastic estimation techniques for loop propagators

• Results at $m_{\pi} = 293$ MeV with two smearings n = 35,200.

Summary

- A basis of multiple Gaussian smearings is well-suited to isolating radial excitations of the nucleon.
- The variational method allows us to access a state that is consistent with the N = 2 radial excitation (Roper).
 - Probing the Roper wave function reveals a nodal structure.
 - Roper does not couple to \(\chi_5, \chi_5'\)
- 5-quark operators can access N^- scattering states.
 - χ'_5 seems to be critical.

Summary

- Nucleon spectrum is extremely robust under a change of operator basis.
- Fitting log *G* or effective mass of eigenstate-projected correlators is critical.
 - Eigenvalues from GEVP are not robust.
- Success depends on a careful $\chi^{\rm 2}$ analysis of eigenstate projected energies.
 - Fitting to a single-state ansatz extracts robust eigenstate energies.

You either see a state, or you don't!

5-quark operators

 Using the Clebsch-Gordan coefficients we can write down five quark operators

$$\begin{split} \chi_{5}(x) &= \sqrt{\frac{2}{3}} \left| n\pi^{+} \right\rangle - \sqrt{\frac{1}{3}} \left| p_{3}\pi^{0} \right\rangle \\ &= \frac{1}{2\sqrt{3}} \epsilon^{abc} \left\{ 2 \left(u^{Ta}(x) \, \Gamma_{1} \, d^{b}(x) \right) \, \Gamma_{2} d^{c}(x) \left[\bar{d}^{e}(x) \, \gamma_{5} \, u^{e}(x) \right] \right. \\ &- \left(u^{Ta}(x) \, \Gamma_{1} \, d^{b}(x) \right) \, \Gamma_{2} u^{c}(x) \left[\bar{d}^{e}(x) \, \gamma_{5} \, d^{e}(x) \right] \\ &+ \left(u^{Ta}(x) \, \Gamma_{1} \, d^{b}(x) \right) \, \Gamma_{2} u^{c}(x) \left[\bar{u}(x)^{e} \, \gamma_{5} \, u^{e}(x) \right] \right\}, \end{split}$$

where χ_5 and χ'_5 correspond to $(\Gamma_1, \Gamma_2) = (C\gamma_5, I)$ and $(\Gamma_1, \Gamma_2) = (C, \gamma_5)$ respectively.