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Background electromagnetic fields and nonrelativistic QED matching:
Scalar case
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The low-energy structure of hadrons can be described systematically using effective field theory, and the
parameters of the effective theory can be determined from lattice QCD computations. Recent work,
however, points to inconsistencies between the background field method in lattice QCD and effective field
theory matching conditions. We show that the background field problem necessitates inclusion of operators
related by equations of motion. In the presence of time-dependent electromagnetic fields, for example,
such operators modify Green’s functions, thereby complicating the isolation of hadronic parameters which
enter on-shell scattering amplitudes. The particularly simple case of a scalar hadron coupled to uniform
electromagnetic fields is investigated in detail. At the level of the relativistic effective theory, operators
related by equations of motion are demonstrated to be innocuous. The same result does not hold in the
nonrelativistic effective theory, and inconsistencies in matching are resolved by carefully treating operators
related by equations of motion. As uniform external fields potentially allow for surface terms, the problem
is additionally analyzed on a torus where such terms are absent. Temporal image corrections are derived
for charged scalar correlation functions in uniform electric fields as a useful byproduct.

DOI: 10.1103/PhysRevD.89.054017 PACS numbers: 12.39.Hg, 13.40.Gp, 13.60.Fz, 14.20.Dh

I. INTRODUCTION

The electromagnetic structure of hadrons can be deter-
mined directly from photon-hadron scattering cross sec-
tions, but also affects low-energy quantities measured in
high-precision experiments. A prominent example that has
sparked considerable recent interest is the proton charge
radius, which is a quantity appearing in the lowmomentum-
transfer expansion of the proton electric form factor. While
the proton charge radius can be extracted from electron-
proton scattering cross sections, this quantity additionally
gives rise to the leading finite-size effect in the spectrum
of hydrogenic atoms. From high-precisionmeasurements of
the muonic hydrogen spectrum [1,2], the extracted proton
radius is discrepant with that from scattering data at the 7σ
level, see [3] for a comprehensive review.1

The systematic and unified treatment of low-energy
hadron structure is afforded by effective field theory
techniques. The description of proton-size effects in

nonrelativistic quantum electrodynamics (NRQED), for
example, has been given in [8]. In the effective hadronic
theory, low-energy interactions are systematically written
down with parameters that encompass hadronic structure.
Effective field theory matching allows one to relate the
universal low-energy parameters to physical observables.
In this way, one sees that the same parameters which enter
the description of scattering cross sections also enter
high-precision low-energy quantities, such as proton-size
corrections to the muonic hydrogen spectrum. In principle,
the parameters entering the effective hadronic theory can
be computed using lattice QCD, and steps in this direction
have been made. The present work concerns the extension
of effective field theory matching to the case of background
fields. To be clear, we find no problems with effective
field theory matching of S-matrix elements; however, the
extension of effective field theory matching to theories in
background fields involves a subtlety.
Background field calculations in lattice QCD represent

a fruitful method to determine hadronic properties, see
[9–24]. In particular, electromagnetic polarizabilities can be
accessed using the background field method on the lattice,
while photon-hadron scattering computations are beyond
the current and foreseeable reach of lattice QCD. There
is a theoretical need to understand the relation between
parameters extracted from background field lattice calcu-
lations and those reported by the Particle Data Group. In
this respect, various groups calculating the neutron electric
polarizability, for example, are not determining the same

*jwlee2@ccny.cuny.edu
†btiburzi@ccny.cuny.edu
1Another example, which is directly related to the present

work, concerns the electromagnetic structure of the pion.
Charged pion electromagnetic polarizabilities determined from
chiral perturbation theory [4] are discrepant with scattering
experiments by a factor of 2 [5], which corresponds to ∼2.5σ.
These low-energy quantities also appear in high-precision phys-
ics, namely as hadronic corrections to the anomalous magnetic
moment of the muon [6,7].
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Proton polarizability effect is the main 
source of uncertainty.

The coefficients ci, di depend on the choice of ultraviolet
regulator. Since no new bound state computations are
necessary, we will quote results for phenomenological
inputs and bound state energies that are independent of
this choice. We are interested in proton structure correc-
tions to energy levels through order m3

e!
5=m2

p, and there-
fore need cF;D;S in Lp through Oð!Þ, and d1;2 through
Oð!2Þ. Other operators in Lp will enter when we analyze
the lowQ2 expansion of the forward Compton amplitude to
constrain d2. Knowledge of the ci’s and di’s allows us to
determine corrections to energy levels. For example, co-
efficients cprotonD and d2 lead to first order energy shifts

"Eðn; ‘Þ ¼ "‘0
m3

rðZ!Þ3
#n3

!
Z!#

2m2
p
cprotonD $ 1

memp
d2

"
; (3)

where mr ¼ memp=ðme þmpÞ is the reduced mass.
Matching.—The NRQED Wilson coefficients are deter-

mined by enforcing matching conditions between full and
effective theories using convenient low energy observ-
ables. We concentrate on the matching conditions for the
proton.

One photon matching.—Wilson coefficients for opera-
tors coupling to a single photon are determined in terms
of the proton elastic form factors and their derivatives at
q2 ¼ 0 by using (1) to compute the amplitude for elastic
scattering of a proton via the electromagnetic current
[16–18]. The form factors satisfy F1ð0Þ ¼ 1, F2ð0Þ ¼ ap,

F0
1ð0Þ ¼

1

6
ðrpEÞ2 $

ap
4m2

p
þ Z2!

3#m2
p
log

mp

$
;

F0
2ð0Þ ¼

1

6
½ð1þ apÞðrpMÞ2 $ ðrpEÞ2' þ

ap
4m2

p
;

(4)

where $ is a photon mass [19]. These expressions serve to
define the phenomenological parameters ap ( 1:793, rpE,
and rpM.

Two-photon matching.—The coefficients cA1, cA2 can be
determined by comparing to spin-averaged amplitudes for

forward and backward Compton scattering in the lab
frame [17]

4m3
p !!=! ¼ $cA1 $ cA2=2þ 1þ 2cM þ cFcS $ c2F;

4m3
p
!%=! ¼ cA1 $ 1; (5)

where !! ¼ 12:0ð6Þ ) 10$4 fm3 and !% ¼ 1:9ð5Þ )
10$4 fm3 [20].
Contact interactions.—The coefficients in (2) can be

fixed using the zero-momentum limit for e$p ! e$p
scattering, cf. Fig. 1. The tree level, Oð!Þ, amplitude is
reproduced by the effective field theory, and the di’s
receive a nonzero contribution starting at Oð!2Þ. We
focus on the spin-independent case and neglect higher
order radiative corrections. The relevant proton matrix
element is the forward Compton amplitude (& ¼ 2k * q,
Q2 ¼ $q2)

1

2

X

s

i
Z

d4xeiq*xhk; sjTfJ'e:m:ðxÞJ&e:m:ð0Þgjk; si

¼ ð$g'& þ q'q&=q2ÞW1ð&; Q2Þ
þ ðk' $ k * qq'=q2Þðk& $ k * qq&=q2ÞW2ð&; Q2Þ:

(6)

Our normalizations are such that for a point particle,W1 ¼
2&2=ðQ4 $ &2Þ and W2 ¼ 8Q2=ðQ4 $ &2Þ. The matching
condition for the spin-averaged zero-momentum four-
point amplitude is

4#mr

$3 $ #mr

2memp$
$ 2#mr

m2
p$

½F2ð0Þ þ 4m2
pF

0
1ð0Þ' $

2

memp

#
2

3
þ 1

m2
p $m2

e

!
m2

e log
mp

$
$m2

p log
me

$

"$
þ "d2ðZ!Þ$2

memp

¼ $me

mp

Z 1

$1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ x2

p Z 1

0
dQ

Q3½ð1þ 2x2ÞW1ð2impQx;Q2Þ $ ð1$ x2Þm2
pW2ð2impQx;Q2Þ'

ðQ2 þ $2Þ2ðQ2 þ 4m2
ex

2Þ ; (7)

where "d2 denotes the contribution to d2 in addition to the
point-particle value.

The imaginary part of the Wi’s can be related to mea-
sured quantities. By inserting a complete set of states into
(6), the proton contribution to ImWi is expressed in terms
of proton form factors, and the continuum contribution to
ImWi is determined by inelastic structure functions. Using
dispersion relations,W2 can be fully reconstructed from its
imaginary part. Since W1 requires a subtraction for a

convergent dispersion relation, knowledge of W1ð0; Q2Þ
is also needed. Thus Wi can be written

W1ð&; Q2Þ ¼ W1ð0; Q2Þ þWp;1
1 ð&; Q2Þ þWc;1

1 ð&; Q2Þ;
W2ð&; Q2Þ ¼ Wp;0

2 ð&; Q2Þ þWc;0
2 ð&; Q2Þ; (8)

where the superscript numbers denote the number of sub-
tractions. The proton terms are

FIG. 1. Two-photon exchange amplitude for e$p ! e$p scat-
tering.
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Figure 4: Level scheme of muonic hydrogen for n = 2 shell, the artificial 2P1/2

and 2P3/2 levels corresponds to centroid for � = 0. Numerical values for level

splittings are presented in Eq. (32).

Figure 5: The box diagram for the O(↵5m4) corrections. The graph in which the

photons cross is also included in the calculation. The blob represents all possible

excitations of the proton, the wiggly lines represent the exchanged photons. The

solid line represents the proton and the dashed line represents the muon.
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a stable radius determination, without the issues discussed, of r
p

= 0.886 fm ±

0.008 fm.

Recent unpublished work by C.E. Carlson and K. Gri�oen points out that a

linear fit to the lowest Q2 Mainz data, Q2 < 0.02 GeV2, where G
E

appears to be

entirely linear, yields r
p

⇡ 0.84 fm, rather than ⇡ 0.88 fm. But great care must

be taken in doing any such fit [19]. Since for the proton r4
p

> 0, the quadratic

term in the Taylor series expansion nearly guarantees that a linear fit to low Q2

data will underestimate the radius. An estimate of the potential size of the e↵ect

can be made with the Kelly form factor parameterization [45], which has r
p

⇡

0.86 fm. A fit to pseudodata up to 0.02 GeV2, with the density and statistics of

the Mainz data set, yields r
p

⇡ 0.84 fm ± 0.01 fm. Adding in a quadratic term

leads to uncertainties on r
p

too large to distinguish between 0.84 fm and 0.88

fm. Similar concerns apply to an extension of this approach up to 0.2 GeV2. An

extensive study of this issue has been performed by M.O. Distler.

To summarize, the apparently simple problem of determining the slope of the

form factor at Q2 = 0 has numerous potential pitfalls. The weight of the evidence

at this point continues to favor a larger radius, about 0.88 fm, but suggests that

claiming an uncertainty at the 0.01 fm level is optimistic.

3 Measurement in muonic hydrogen

A measurement of the Lamb shift in muonic hydrogen (µp) was initially con-

sidered half a century ago as a test of electron vacuum polarization e↵ects [46],

complementary to the Lamb shift in regular, electronic hydrogen [24] which is

dominated by the electron self-energy [47]. The first observation of x-rays from

muonic hydrogen succeeded shortly afterwards [48].
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To summarize, the apparently simple problem of determining the slope of the

form factor at Q2 = 0 has numerous potential pitfalls. The weight of the evidence

at this point continues to favor a larger radius, about 0.88 fm, but suggests that

claiming an uncertainty at the 0.01 fm level is optimistic.

3 Measurement in muonic hydrogen

A measurement of the Lamb shift in muonic hydrogen (µp) was initially con-

sidered half a century ago as a test of electron vacuum polarization e↵ects [46],

complementary to the Lamb shift in regular, electronic hydrogen [24] which is

dominated by the electron self-energy [47]. The first observation of x-rays from

muonic hydrogen succeeded shortly afterwards [48].

R.Pohl, R.Gilman, G.A.Miller, K.Pachucki (2013)

R.Pohl, et al. (2010)
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Lattice QCD approach

(1) calculate lattice two-point correlation functions in the presence of 
classical external EM fields.
(2) compare with the EFT predictions.

When the external field vanishes, the two effective
masses are identical, Mþ

effðtÞ ¼ M%
effðtÞ & MeffðtÞ, and the

standard analysis applies. In Fig. 1, we show the effective
mass plot for the nucleon in the vanishing electric field.
Statistical noise dominates the correlator beyond the win-
dow of time depicted (this is particularly true for the largest
field strengths, see, for example, Fig. 2 below). As we are
limited in statistics, we perform a two-state fit to extract the
mass of the ground state. The fit function, Gðt; n ¼ 0Þ, has
the form

G ðt; 0Þ ¼ Zð0Þ expð%tMÞ þ Z0ð0Þ expð%tM0Þ; (19)

where the parameters Zð0Þ, and M arise from the ground
state, while the primed parameters account for excited state
contamination. We use a correlated chi-squared analysis to
fit the time dependence of the bootstrap ensemble of
correlation functions. As the amplitude parameters Zð0Þ,
and Z0ð0Þ enter the fit function linearly, we utilize variable
projection (see Appendix C) to reduce the number of fit
parameters from four down to two. The fit to the zero field
nucleon correlation function has also been shown in the
figure. The fit window has been determined by comparing
single and double effective masses, see [24,35,36] for de-
tails on the latter. For simplicity we choose a fit window
that can be used for all values of the electric field. This
restricts us to tmax=at & 30, and we take tmax=at ¼ 28. For
the largest field strengths, the maximum fit time cannot be
extended too far beyond this time. As a two-state fit is
required, we set tmin=at as small as possible to include the
most data. We take tmin=at ¼ 5, as data a few time steps
earlier are not well described by a two-state fit. In our final
results, we will estimate the systematic uncertainty due to
the choice of fit window by varying the minimum and
maximum fit times. The ground-state mass we extract
from the two-state fit is consistent with the high statistics
study [24].

A. Neutron

For nonvanishing electric fields, fit functions for the
neutron and proton differ considerably. For the neutron,
the fit function is similar in form to the zero-field case,
however, there are two distinct fit functions corresponding
to the boost projectors P', namely

G'ðt; nÞ ¼ ZðnÞ½1'!lattðnÞElatt=") exp½%tEðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% ð!lattðnÞElatt="Þ2

q
)

þ Z0ðnÞ½1'!0lattðnÞElatt=") exp½%tE0ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% ð!0lattðnÞElatt="Þ2

q
): (20)

The unprimed parameters are those of the ground state,
while the primed parameters account for excited state
contributions. Notice both fit functions are identical to
Eq. (19) for the vanishing electric field. For a fixed nonzero
value of the electric field strength, there are six fit parame-
ters, three for the ground state: ZðnÞ, EðnÞ, !lattðnÞ, and
similarly three for the excited state contribution.6 To per-
form the fits, variable projection is again utilized to remove
the overall amplitudes, ZðnÞ and Z0ðnÞ, see Appendix C.
This reduces the number of fit parameters from six down to
four. To determine the remaining four parameters, we

perform simultaneous fits to both boost-projected correla-
tors for each value of the external field.7 In principle, such
fits should take into account correlations between the
boost-projected correlators. We find, however, that the
off-diagonal correlations between boost-projected correla-
tors are an order of magnitude smaller than the diagonal
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FIG. 1 (color online). Effective mass plot for the nucleon in
vanishing electric field (n ¼ 0). The effective mass of the two-
state fit to the lattice correlation function is the curved (yellow)
band shown, where the error band reflects only the uncertainty in
the ground-state energy. The flat (red) band also shown is the
value of the extracted ground-state energy with its uncertainty.
For long times, the effective mass should approach the flat band.

6In principle, the amplitude ZðnÞ may be different for the
differing boost projections, Gþðt; nÞ and G%ðt; nÞ. Any such
difference, however, is purely statistical in origin, and a suitable
number of measurements should produce a common amplitude
for the boost-projected correlators within uncertainties.

7A simultaneous fit is not required. Alternatively one can
separately fit the two boost-projected correlation functions, and
combine these results to determine energies and magnetic mo-
ments. In pursuing this alternate procedure, we find that fits to
the plus-projected correlation functions are always better than
fits to the minus-projected correlation functions. For small field
strengths, the difference is insignificant; however, for the largest
field strength, the fit to the minus-projected correlation function
is poor. We do not presently know the origin of this effect. Using
a simultaneous fit to both boost-projected correlators mitigates
(but does not remove) the problem with the largest field strength.
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FIG. 2 (color online). Effective mass plots for the boost-projected neutron correlation functions. For each value of the electric field
strength, n, the curved (yellow) bands show the result of the simultaneous two-state fit to both boost-projected correlation functions
using Eq. (20). The width of the band reflects the uncertainty in the extracted ground-state energy, EðnÞ. The flat (red) band shows the
extracted value of EðnÞ with the uncertainty.
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e.g) Energy shift by a uniform electric field for neutron
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Current insertion method

Background field method

ΔL ¼ C0

M2
Φ†ðD2 þM2Þ2Φþ C1

M4
Φ†ðD2 þM2Þ3Φ

þ C2

M4
F2Φ†ðD2 þM2ÞΦ: (13)

These operators have been simplified using integration
by parts. In particular, an integration by parts shows that
the last operator is equivalent to the equation-of-motion
operator appearing in the toy-model Lagrange density,
Eq. (3), under the assumption that the electromagnetic
fields are uniform. The operators appearing in Eq. (13) can
be removed with a field redefinition having the form

Φ ¼
!
1þ C0

2M2
ðD2 þM2Þ

þ C1

2M4
ðD2 þM2Þ2 þ C2 − C0C0

2M4
F2

"
Φ0: (14)

In terms of the redefined field, we accordingly have

Lþ ΔL ¼ DμΦ0†DμΦ0 −M2Φ0†Φ0

−
C0

M2
F2Φ0†Φ0 þ C2

M4
TμνDμΦ0†DνΦ0; (15)

up to higher-order terms of mass-dimension ten. Notice
that the operators with coefficients C1 and C3 vanish in
uniform external fields, and are not required in our
consideration.
The effect of the field redefinition in Eq. (14) on

Green’s functions happens to be innocuous. As in the
toy-model example, we can compute the Φ propagator by
first determining the Φ0 propagator G0ðx; yÞ, and then
appealing to the field redefinition. Terms in the field
redefinition involving ðD2 þM2Þn only produce contri-
butions to the Φ two-point function Gðx; yÞ proportional
to ðD2 þM2Þn−1δðx − yÞ. Such singular contributions
have Φ and Φ† fields at the same spacetime point, and
can be removed by imposing a renormalization condition
on the vacuum energy. As a result, theΦ propagator has the
form

Gðx; yÞ ¼
#
1 −

C2 − C0C0

M4
F2

$
G0ðx; yÞ; (16)

for xμ ≠ yμ. Thus, the two-point functions in the reduced
and unreduced theories only differ by an overall constant.
For on-shell states, the overall constant can be fixed by the
wave function renormalization, i.e. the residue at the pole.
As expected, the field redefinition does not change the
spectrum of the theory. In uniform electric fields, there is
no on-shell condition for charged particles; however, the
overall constant crucially does not alter the time depend-
ence of the correlation function. In this way, the reduced
and unreduced theories yield the same prediction for the

behavior of the correlation function, which is of practical
importance for lattice QCD analyses.8

Based on our analysis, we can use the theory specified by
Eq. (9) to describe the dynamics of a charged relativistic
scalar coupled nonminimally to electromagnetism. While
additional terms, such as those in Eq. (13), are needed to
determine the Green’s functions of the scalar propagating
in external electromagnetic fields, these terms are not
needed when we restrict our attention to uniform fields.
In a uniform magnetic field, the correlation functions are
unchanged provided that wave function renormalization
has been accounted for in both reduced and unreduced
theories. In a uniform electric field, which necessarily
lacks the on-shell condition, the only modification to the
two-point function is an overall constant.

B. One- and two-photon matching

To discuss matching between relativistic and non-
relativistic theories below, it is efficacious to relate the
low-energy constants to observable quantities. The relativ-
istic scalar hadron theory given in Eq. (9) depends on
four unknown parameters, C0–C3. The operators with
coefficients C1 and C3 obviously only contribute to
processes involving at least one virtual photon. To relate
these parameters to physical observables, we compute one-
and two-photon processes. It is sufficient to treat processes
with one virtual photon, and two real photons in order to
determine all four parameters.
The scalar hadron’s interaction with a virtual photon is

described by the electromagnetic form factor, Fðq2Þ, enter-
ing current matrix elements between the scalar hadron.
These matrix elements have the form

hΦðp0ÞjJμe:m:jΦðpÞi ¼ ðp0 þ pÞμFðq2Þ; (17)

on account of gauge invariance and Lorentz covariance.
In the small momentum-transfer limit, we may expand the
form factor to obtain

Fðq2Þ ¼ Z þ 1

3!
q2hr2iþ 1

5!
q4hr4iþ % % % : (18)

The form factor at vanishing momentum transfer is
constrained by the Ward identity to be the total charge.
The first-order correction is conventionally parametrized
by defining a charge radius

ffiffiffiffiffiffiffiffi
hr2i

p
, and the second-order

correction we define as being a higher moment of the
charge distribution, hr4i. The physical interpretation of
both of these quantities is complicated by relativistic

8In lattice QCD computations, moreover, the overall normali-
zation of the two-point correlation function is unknown. With the
contribution of the ground-state hadron isolated, the lattice
correlator is proportional to the overlap factor between the
chosen quark-level interpolating field and the ground-state
hadron.

BACKGROUND ELECTROMAGNETIC FIELDS AND … PHYSICAL REVIEW D 89, 054017 (2014)

054017-5

ΔL ¼ C0

M2
Φ†ðD2 þM2Þ2Φþ C1

M4
Φ†ðD2 þM2Þ3Φ

þ C2

M4
F2Φ†ðD2 þM2ÞΦ: (13)

These operators have been simplified using integration
by parts. In particular, an integration by parts shows that
the last operator is equivalent to the equation-of-motion
operator appearing in the toy-model Lagrange density,
Eq. (3), under the assumption that the electromagnetic
fields are uniform. The operators appearing in Eq. (13) can
be removed with a field redefinition having the form

Φ ¼
!
1þ C0

2M2
ðD2 þM2Þ

þ C1

2M4
ðD2 þM2Þ2 þ C2 − C0C0

2M4
F2

"
Φ0: (14)

In terms of the redefined field, we accordingly have

Lþ ΔL ¼ DμΦ0†DμΦ0 −M2Φ0†Φ0

−
C0

M2
F2Φ0†Φ0 þ C2

M4
TμνDμΦ0†DνΦ0; (15)

up to higher-order terms of mass-dimension ten. Notice
that the operators with coefficients C1 and C3 vanish in
uniform external fields, and are not required in our
consideration.
The effect of the field redefinition in Eq. (14) on

Green’s functions happens to be innocuous. As in the
toy-model example, we can compute the Φ propagator by
first determining the Φ0 propagator G0ðx; yÞ, and then
appealing to the field redefinition. Terms in the field
redefinition involving ðD2 þM2Þn only produce contri-
butions to the Φ two-point function Gðx; yÞ proportional
to ðD2 þM2Þn−1δðx − yÞ. Such singular contributions
have Φ and Φ† fields at the same spacetime point, and
can be removed by imposing a renormalization condition
on the vacuum energy. As a result, theΦ propagator has the
form

Gðx; yÞ ¼
#
1 −

C2 − C0C0

M4
F2

$
G0ðx; yÞ; (16)

for xμ ≠ yμ. Thus, the two-point functions in the reduced
and unreduced theories only differ by an overall constant.
For on-shell states, the overall constant can be fixed by the
wave function renormalization, i.e. the residue at the pole.
As expected, the field redefinition does not change the
spectrum of the theory. In uniform electric fields, there is
no on-shell condition for charged particles; however, the
overall constant crucially does not alter the time depend-
ence of the correlation function. In this way, the reduced
and unreduced theories yield the same prediction for the

behavior of the correlation function, which is of practical
importance for lattice QCD analyses.8

Based on our analysis, we can use the theory specified by
Eq. (9) to describe the dynamics of a charged relativistic
scalar coupled nonminimally to electromagnetism. While
additional terms, such as those in Eq. (13), are needed to
determine the Green’s functions of the scalar propagating
in external electromagnetic fields, these terms are not
needed when we restrict our attention to uniform fields.
In a uniform magnetic field, the correlation functions are
unchanged provided that wave function renormalization
has been accounted for in both reduced and unreduced
theories. In a uniform electric field, which necessarily
lacks the on-shell condition, the only modification to the
two-point function is an overall constant.

B. One- and two-photon matching

To discuss matching between relativistic and non-
relativistic theories below, it is efficacious to relate the
low-energy constants to observable quantities. The relativ-
istic scalar hadron theory given in Eq. (9) depends on
four unknown parameters, C0–C3. The operators with
coefficients C1 and C3 obviously only contribute to
processes involving at least one virtual photon. To relate
these parameters to physical observables, we compute one-
and two-photon processes. It is sufficient to treat processes
with one virtual photon, and two real photons in order to
determine all four parameters.
The scalar hadron’s interaction with a virtual photon is

described by the electromagnetic form factor, Fðq2Þ, enter-
ing current matrix elements between the scalar hadron.
These matrix elements have the form

hΦðp0ÞjJμe:m:jΦðpÞi ¼ ðp0 þ pÞμFðq2Þ; (17)

on account of gauge invariance and Lorentz covariance.
In the small momentum-transfer limit, we may expand the
form factor to obtain

Fðq2Þ ¼ Z þ 1

3!
q2hr2iþ 1

5!
q4hr4iþ % % % : (18)

The form factor at vanishing momentum transfer is
constrained by the Ward identity to be the total charge.
The first-order correction is conventionally parametrized
by defining a charge radius

ffiffiffiffiffiffiffiffi
hr2i

p
, and the second-order

correction we define as being a higher moment of the
charge distribution, hr4i. The physical interpretation of
both of these quantities is complicated by relativistic

8In lattice QCD computations, moreover, the overall normali-
zation of the two-point correlation function is unknown. With the
contribution of the ground-state hadron isolated, the lattice
correlator is proportional to the overlap factor between the
chosen quark-level interpolating field and the ground-state
hadron.

BACKGROUND ELECTROMAGNETIC FIELDS AND … PHYSICAL REVIEW D 89, 054017 (2014)

054017-5

Zero E field Nonzero E field

L = �

†
"
iD

0

+ c

2

~

D

2

2M
+ c

D

[~r · ~E]

8M2

+ c

4

~

D

4

8M3

+ ic

M

{Di

, [~r⇥ ~

B]i}
8M3

+c

A1

~

B

2 � ~

E

2

8M3

� c

A2

~

E

2

16M3

+ c

X0

[iD
0

,

~

D · ~E + ~

E · ~D]

8M3

#
�

c

X0

[iD
0

,

~

D · ~E + ~

E · ~D]

8M3

+ c

X

0
0

[iD
0

, i~� · ( ~D ⇥ ~

E + ~

E ⇥ ~

D]

8M3

(43)

16⇡M3

↵

E

= Zc

D

� c

A1 �
1

2
c

A2 16⇡M3

�

M

= c

A1 (44)

��E( ~E) =
1

2


4⇡↵

E

� Z

3M
hr2i

�
~

E

2 } (45)

�E(E) (46)

��E( ~E) = �
✓
c

A1 +
1

2
c

A2 + 2Zc

X0

◆
~

E

2

8M3

(47)

��E( ~E) =
1

2
4⇡↵

E

~

E

2 } (48)

c

X0 = �Z � 1

2
c

D

(49)

7

Thursday, June 26, 14



NRQED matching for hadron

2

a charged spin-half hadron in an uniform magnetic field,
we investigate the two-point correlation function on a
continuous Euclidean torus in Appendix B. A brief sum-
mary is presented in Sec. IV.

II. NON-RELATIVISTIC QED FOR A
SPIN-HALF HADRON

The nonrelativistic QED Lagrangian, a Lagrangian for
the e↵ective theory of a heavy spin-half hadron coupled
to external electromagnetic fields in the inverse powers of
the hadron mass M , has previously been deveoloped to

order 1/M3 in [19, 21, 22] and to order 1/M4 in [23]. This
Lagrangian is the most general, but the most economical
e↵ective Lagrangian where equations of motion were used
to reduce the number of operators, and thus is restricted
to the computation for on-shell external states. Because
background field method in lattice QCD may have no
on-shell conditions in presence of time-dependent exter-
nal fields, the e↵ective Lagrangian should retain opera-
tors related by equations of motion in order to correctly
describe the Green’s function and determine hadronic pa-
rameters [20]. By imposing Hermiticity, and invariance
under P , T , and gauge transformations, we find the non-
relativistic QED Lagrangian up to O(M�3),

L =  †
"
iD0 + c2

~D2

2M
+ c4

~D4

8M3
+ cF

~� · ~B
2M

+ cD
[~r · ~E]

8M2
+ icS

~� · ( ~D ⇥ ~E � ~E ⇥ ~D)

8M2
+ cW1

{ ~D2,~� · ~B}
8M3

�cW2

Di~� · ~BDi

4M3
+ cp0p

~D · ~B~� · ~D + ~� · ~D ~B · ~D
8M3

+ cA1

~B2 � ~E2

8M3
� cA2

~E2

16M3
+ icM

{Di, [~r⇥ ~B]i}
8M3

+cX0

[iD0, ~D · ~E + ~E · ~D]

8M3
+ icX0

0

[iD0,~� · ( ~D ⇥ ~E + ~E ⇥ ~D)]

8M3

#
 ,

(1)

where D0 = @0 + iZA0 and Di = ri � iZAi. The electric and magnetic fields ~E and ~B are given by standard
expressions, ~E = �@0 ~A � ~rA0 and ~B = ~r ⇥ ~A, respectively. Note that we have adopted the convention that
bracketed derivatives only act inside the square brackets. Hermiticity requires that D0, Bi, and �i are multiplied
by i, while the derivative operators are combined with other operators by commutators or anticommtators. Parity
requires an even number of factors of Di and Ei. The other time-reversal even quantity involving the magnetic field
can be eliminated by using Maxwell’s equation, @0 ~B = �~r⇥ ~E.

The last two operators are the operators related by equations of motion, which can explicitly modify the time
dependence of Green’s functions G(t0, t) in a time-dependent background gauge field 1. For on-shell processes involving
 , these operators can be eliminated from the Lagrangian using the HQET equations of motion,

 † [iD0, ~D · ~E + ~E · ~D]

8M3
 = �c2 

† [ ~D
2, ~D · ~E + ~E · ~D]

16M4
 ,

 † [iD0,~� · ( ~D ⇥ ~E + ~E ⇥ ~D)]

8M3
 = �c2 

† [ ~D
2,~� · ( ~D ⇥ ~E + ~E ⇥ ~D)]

16M4
 , (2)

and we have the standard NRQED Lagrangian. Al-
though there are no physical observables corresponding
to these operators, however, the absence of them leads
to incorrect relation between static hadron properties
and scattering observables. For example, in the zero-
momentum limit of the standard NRQED under uniform

1 Notice that there are more equation-of-motion operators, such
as  †(iD0)i for i > 1 and ~E2 †iD0 . The former operator
modifies the Green’s function by singular terms involving time
derivatives of delta functions (D0)n�1�(t0 � t), while the latter
modifies the time dependence of G(t0, t) only in a nonuniform
electric field. For these reasons, we exclude these operators re-
stricting our considerations to uniform electromagnetic fields.

external electric fields the energy is shifted by

��E( ~E) = �
✓
cA1 +

1

2
cA2

◆ ~E2

8M3
+ · · · , (3)

which is determined by the two-point correlation func-
tion. Note that this energy shift is strictly physical and
should not receive any contribution from virtual pro-
cessess. On the other hand, the NRQED matching con-
ditions obtained from one- and two-photon scatterings
shows that [23]

cA1 +
1

2
cA2 = (Z + 2)2 +

4Z

3
M2hri2 � 16⇡M3↵E ,

(4)

where , ↵E , and hri2 are the anomalous magnetic mo-
ment, electric polarizability, and charge radius, respec-
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NRQED matching for hadron

Two-point function

One- & two-photon matching

Caswell & Lepage (1986)
Kinoshita & Nio(1996)
Manohar (1997)

charge radius (virtual)

NRQED action density 
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EFT for Background field calculation

Conventional effective theories were developed with an 
assumption of the on-shell condition, where operators related 
by equations of motion are redundant and eliminated. 

Symmetry
• Philosophy of EFT

Power countings
No surface terms
Equations of motion

Gauge inv., Parity, Time-reversal, ...

With background external fields,

Inverse of mass, velocity, ...

Minimize the number of parameters
Practically crucial

the on-shell condition might be lost.

Thursday, June 26, 14



Equation-of-motion operators

• Toy model: relativistic scalar QED

Off-shell: Unclear at a first glance. Loop calculations (complicate) are 
involved.

quantity. Before this issue can be addressed, we must first
understand how to match effective theories in external
fields.
In the present work, we expose a subtlety in matching

hadronic effective field theories in electromagnetic fields.
To highlight this subtlety, let us point to an inconsistency
that results from incorrect matching conditions in external
fields. Applying the NRQED method of [25] to determine
the initial energy shift of a charged scalar in a uniform
electric field, we obtain the result (to be discussed in
Sec. IV C 2 below)

ΔE ¼ −
1

2

!
4παE −

Z
3M

hr2i
"
~E2; (1)

where M, αE, and hr2i are the scalar’s mass, electric
polarizability, and charge radius, respectively. Appearance
of the charge radius in the energy shift is rather surprising,
because such virtual photon contributions should be absent
on strictly physical grounds. This result is to be contrasted
with the initial energy shift in the relativistic case [18]

ΔE ¼ −
1

2
4παE ~E

2; (2)

which turns out to be the correct result.2 Resolution of
this inconsistency is one of the goals of this work. We find
that resolution is possible by extending matching to the
Green’s functions, which requires retaining effective field
theory operators related by equations of motion. As a result,
the matching of S-matrix elements determined in [25] is
completely unaffected, but can be modified in external
fields. Themodification accounts for the difference between
Eqs. (1) and (2).
Throughout we consider the dynamics of a composite

scalar coupled to electromagnetic fields, and our presen-
tation is organized as follows. We begin in Sec. II with
a demonstration that operators related by equations of
motion can modify Green’s functions. For time-dependent
electromagnetic fields, we provide an illustrative example
that points to an obstruction in the extraction of on-shell
properties using background field correlators in lattice
QCD. Despite this general obstruction, we show in
Sec. III that the particular case of a charged, relativistic,
scalar particle coupled to uniform electromagnetic fields
happens to be immune to such difficulties. To facilitate

matching with the nonrelativistic theory, we additionally
compute one- and two-photon processes to relate the
parameters of the relativistic theory to observables, and
obtain the correlation functions of charged relativistic
scalars in uniform electric and magnetic fields. Next in
Sec. IV, we write down the nonrelativistic theory of a
composite scalar using heavy quark effective theory
(HQET) power counting.3 We argue for the inclusion of
an additional operator which ordinarily would be eliminated
by use of the equations of motion. The operator is shown to
modify charged scalar Green’s functions in uniform electric
fields, and is required so that Green’s functions match
between relativistic and nonrelativistic theories. To compute
the nonrelativistic propagator, we employ both HQET and
NRQED power counting, and obtain results consistent with
the nonrelativistic reduction of the relativistic theory only
when operators related by equations of motion are retained
in the nonrelativistic theory. As a final check, we expand the
relativistic theory in powers of the scalar’s mass for a brute-
force determination of the matching coefficients at the
level of the action. Certain technical details are relegated
to Appendices. The problem of a charged scalar hadron
in an electric field is formulated on a Euclidean torus in
Appendix A, and precludes the possibility of surface terms.
The NRQED expansion of the relativistic charged scalar
propagator is determined in Appendix B. In the last section
of the main text, Sec. V, we summarize our findings.

II. OPERATORS RELATED BY EQUATIONS
OF MOTION

Ordinarily operators related by equations of motion
are redundant, and can be dropped from an effective field
theory. This has the desirable consequence of reducing
the number of low-energy parameters, which is essential
in economically parametrizing the model-independent
physics relevant at a given energy scale. In external fields,
however, the issue becomes subtle, and our goal is to
expose the subtlety first in the context of a simplified
example.
Consider the following toy-model Lagrange density for a

charged composite scalar

L ¼ DμΦ†DμΦ −M2Φ†Φþ C
2M4

Φ†Φ∂2F2

þ C
M4

F2ðDμΦ†DμΦ −M2Φ†ΦÞ; (3)

where Fμν is the electromagnetic field-strength tensor, with
C and C as the dimensionless low-energy constants of this
model. Nonminimal photon couplings are allowed because

2Here is where the exact definition of the initial energy
becomes important. Technically we must determine the non-
relativistic expansion of the relativistic correlator to compare the
initial energy with that appearing in Eq. (1). Performing this
expansion (also to be discussed in Sec. IV C 2 below), we obtain
the nonrelativistic initial energy shift ΔE ¼ − 1

2 ½4παE þ Z2

2M3&~E2.
Notice that the additional term in the energy shift is already
necessarily contained in the relativistic correlator employed in
the analysis of [18].

3Here we employ the acronym HQET for any effective theory
that utilizes an expansion in inverse powers of a particle’s mass.
This power counting is, of course, shared by its namesake, heavy
quark effective theory.
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On-shell: Fields satisfy the classical equations of motion.

T
+

(~x, ⌧) =
1 + �

4

2
e

M⌧

e

iS(~x,⌧) (23)

T�(~0, 0) =
1 + �

4

2
(24)

N (~x, ⌧) = [4(M2 � ~

D

2)]1/4eM⌧ (25)

S

2

=
Z + 

4M2

�

0

~� · ~E (26)

C

1

2M4

�†�@2

F

2 +
C

2

M

4

F

2

⇣
D

µ

�†
D

µ��M

2�†�
⌘

(27)

6= (28)

c

D

=
4

3
M

2hri2 (29)

C

0

2M4

�0†�0
@

2

F

2 (30)

C

0 = C

1

+ C

2

(31)

� =

✓
1� C

2

2M4

F

2

◆
�0 (32)

=


1� C

2

2M4

[F 2(x) + F

2(y)]

�
G0(x, y) (33)

5

Thursday, June 26, 14
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• Toy model: relativistic scalar QED
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quantity. Before this issue can be addressed, we must first
understand how to match effective theories in external
fields.
In the present work, we expose a subtlety in matching

hadronic effective field theories in electromagnetic fields.
To highlight this subtlety, let us point to an inconsistency
that results from incorrect matching conditions in external
fields. Applying the NRQED method of [25] to determine
the initial energy shift of a charged scalar in a uniform
electric field, we obtain the result (to be discussed in
Sec. IV C 2 below)

ΔE ¼ −
1

2

!
4παE −

Z
3M

hr2i
"
~E2; (1)

where M, αE, and hr2i are the scalar’s mass, electric
polarizability, and charge radius, respectively. Appearance
of the charge radius in the energy shift is rather surprising,
because such virtual photon contributions should be absent
on strictly physical grounds. This result is to be contrasted
with the initial energy shift in the relativistic case [18]

ΔE ¼ −
1

2
4παE ~E

2; (2)

which turns out to be the correct result.2 Resolution of
this inconsistency is one of the goals of this work. We find
that resolution is possible by extending matching to the
Green’s functions, which requires retaining effective field
theory operators related by equations of motion. As a result,
the matching of S-matrix elements determined in [25] is
completely unaffected, but can be modified in external
fields. Themodification accounts for the difference between
Eqs. (1) and (2).
Throughout we consider the dynamics of a composite

scalar coupled to electromagnetic fields, and our presen-
tation is organized as follows. We begin in Sec. II with
a demonstration that operators related by equations of
motion can modify Green’s functions. For time-dependent
electromagnetic fields, we provide an illustrative example
that points to an obstruction in the extraction of on-shell
properties using background field correlators in lattice
QCD. Despite this general obstruction, we show in
Sec. III that the particular case of a charged, relativistic,
scalar particle coupled to uniform electromagnetic fields
happens to be immune to such difficulties. To facilitate

matching with the nonrelativistic theory, we additionally
compute one- and two-photon processes to relate the
parameters of the relativistic theory to observables, and
obtain the correlation functions of charged relativistic
scalars in uniform electric and magnetic fields. Next in
Sec. IV, we write down the nonrelativistic theory of a
composite scalar using heavy quark effective theory
(HQET) power counting.3 We argue for the inclusion of
an additional operator which ordinarily would be eliminated
by use of the equations of motion. The operator is shown to
modify charged scalar Green’s functions in uniform electric
fields, and is required so that Green’s functions match
between relativistic and nonrelativistic theories. To compute
the nonrelativistic propagator, we employ both HQET and
NRQED power counting, and obtain results consistent with
the nonrelativistic reduction of the relativistic theory only
when operators related by equations of motion are retained
in the nonrelativistic theory. As a final check, we expand the
relativistic theory in powers of the scalar’s mass for a brute-
force determination of the matching coefficients at the
level of the action. Certain technical details are relegated
to Appendices. The problem of a charged scalar hadron
in an electric field is formulated on a Euclidean torus in
Appendix A, and precludes the possibility of surface terms.
The NRQED expansion of the relativistic charged scalar
propagator is determined in Appendix B. In the last section
of the main text, Sec. V, we summarize our findings.

II. OPERATORS RELATED BY EQUATIONS
OF MOTION

Ordinarily operators related by equations of motion
are redundant, and can be dropped from an effective field
theory. This has the desirable consequence of reducing
the number of low-energy parameters, which is essential
in economically parametrizing the model-independent
physics relevant at a given energy scale. In external fields,
however, the issue becomes subtle, and our goal is to
expose the subtlety first in the context of a simplified
example.
Consider the following toy-model Lagrange density for a

charged composite scalar

L ¼ DμΦ†DμΦ −M2Φ†Φþ C
2M4

Φ†Φ∂2F2

þ C
M4

F2ðDμΦ†DμΦ −M2Φ†ΦÞ; (3)

where Fμν is the electromagnetic field-strength tensor, with
C and C as the dimensionless low-energy constants of this
model. Nonminimal photon couplings are allowed because

2Here is where the exact definition of the initial energy
becomes important. Technically we must determine the non-
relativistic expansion of the relativistic correlator to compare the
initial energy with that appearing in Eq. (1). Performing this
expansion (also to be discussed in Sec. IV C 2 below), we obtain
the nonrelativistic initial energy shift ΔE ¼ − 1

2 ½4παE þ Z2

2M3&~E2.
Notice that the additional term in the energy shift is already
necessarily contained in the relativistic correlator employed in
the analysis of [18].

3Here we employ the acronym HQET for any effective theory
that utilizes an expansion in inverse powers of a particle’s mass.
This power counting is, of course, shared by its namesake, heavy
quark effective theory.
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we assume Φ is a composite particle with charged con-
stituents. The electromagnetic gauge covariant derivatives
have the action

DμΦ ¼ ∂μΦþ iZAμΦ;

DμΦ† ¼ ∂μΦ† − iZAμΦ†: (4)

No power counting has been utilized in writing Eq. (3); in
this section, we merely select operators to illustrate our
point. It will prove useful to treat the electromagnetic
coupling as small. To this end, we consider the parameters
C and C to be proportional to the square of the electric
charge, α ¼ e2

4π, and we will drop terms of Oðα2Þ in what
follows.
For processes with only on-shellΦ states, it turns out that

observables, such as the amplitude for the Compton
scattering process γ þ Φ → γ þ Φ, depend only on a
particular linear combination of low-energy parameters,
Cþ C. For virtual Φ states, the diagrammatic analysis is
more involved; but, off-shell contributions from the
equation-of-motion operator generally can be removed in
the renormalization of the theory. Because the diagram-
matic approach is cumbersome, we handle the removal of
redundant operators by employing field redefinitions, see
[26] and references therein. For the toy model, we invoke
the field redefinition

Φ ¼
!
1 − C

2M4
F2

"
Φ0; (5)

which corresponds to dressing the scalar field with photons.
After field redefinition, the theory is described by the
Lagrange density

L0 ¼ DμΦ0DμΦ0 −M2Φ0†Φ0 þ C0

2M4
Φ0†Φ0∂2F2 þOðα2Þ;

(6)

with C0 ¼ Cþ C. The operator related by equations of
motion has now been removed. The coefficient C0 can be
chosen so that Eq. (6) reproduces S-matrix elements for
processes involving the composite scalar and photons. This
procedure exposes that on-shell processes depend only
on C0. In Eq. (3), additional dependence on the parameterC
that can arise from virtual Φ contributions in loop diagrams
must be canceled by the counterterms necessary to renorm-
alize the theory. In this way, the theories described by
Eqs. (3) and (6) are equivalent.
Now consider the toy-model Lagrange density for the

case where Fμν is a time-dependent external field. The
explicit time dependence introduced eliminates the pos-
sibility of an on-shell condition. As a result, one cannot
appeal to a renormalization prescription to fix the behavior
of the two-point function at the single-particle pole,
because there are no such poles. Consequently the

parameters C and C can be resolved at the level of the
Green’s function.4 Suppose we start with the reduced
theory described by Eq. (6). The propagator for Φ0 we
write as G0ðx; yÞ, with

G0ðx; yÞ ¼ h0jTfΦ0ðxÞΦ0†ðyÞgj0i: (7)

Starting with the theory in Eq. (3), on the other hand,
the propagator for Φ we write as Gðx; yÞ. This propagator
can be deduced simply5 by utilizing the field redefinition
in Eq. (5)

Gðx; yÞ ¼ h0jTfΦðxÞΦ†ðyÞgj0i

¼
#
1 −

C
2M4

½F2ðxÞ þ F2ðyÞ&
$
G0ðx; yÞ; (8)

where we have dropped contributions that are of order α2.
Notice this correlator necessarily has different time
dependence.6

The difference between propagators has an important
consequence for the background field method in lattice
QCD computations. After computing correlation functions
of the scalar particle on the lattice, we must match the
behavior of the lattice-determined correlator with the
prediction from an effective hadronic theory. Without an

4Notice that the charged particle Green’s function is gauge
dependent. Implicitly included in the choice of external field is
the gauge, which is then fixed. We will derive results below for
particularly simple gauge choices; results in other gauges can
similarly be derived. While appending an electromagnetic gauge
link between operators in the two-point function will lead one
to gauge invariant Green’s functions, these Green’s functions
will then depend on the path chosen to link the operators. Path
dependence arises because flux threads loops transverse to the
electromagnetic fields.

5One can also compute the Φ propagator directly by treating
the operator with coefficient C in Eq. (3) as a perturbation. In this
approach, one works in coordinate space, and utilizes the Green’s
function identity ðD2

y þM2ÞGðx; yÞ ¼ iδðx − yÞ. The resulting
propagator is the same as Eq. (8), and eliminates possible
additional factors that could appear from carrying out the field
redefinition carefully at the level of the functional integral.

6It is useful to imagine the case of a time-independent
magnetic field, for which one has an on-shell condition. In this
case, the operator with coefficient C does not modify the
spectrum of the theory as can be shown by taking the temporal
Fourier transform of Eq. (8),

Gð~x; ~yjEÞ ¼
#
1 −

C
2M4

½F2ð~xÞ þ F2ð~yÞ&
$
G0ð~x; ~yjEÞ:

The residues at each energy pole, however, are different between
the reduced and unreduced theories. This difference reflects
perturbative corrections to the coordinate wave functions of
energy eigenstates. Without the explicit coordinate dependence
introduced by the magnetic field in this case, one could impose
the standard wave function renormalization condition which
would lead to on-shell Green’s functions that match, both poles
and residues.
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     is chosen for the reduced action to reproduce S-matrix elements.
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S-matrix elements 
are Equivalent.

Field redefinition
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Equation-of-motion operators

External field: Explicit time-dependence may prevent for the two-point 
function to develop a single particle pole. We should appeal to the 
Green’s function to resolve the parameters C1 and C2.

we assume Φ is a composite particle with charged con-
stituents. The electromagnetic gauge covariant derivatives
have the action

DμΦ ¼ ∂μΦþ iZAμΦ;

DμΦ† ¼ ∂μΦ† − iZAμΦ†: (4)

No power counting has been utilized in writing Eq. (3); in
this section, we merely select operators to illustrate our
point. It will prove useful to treat the electromagnetic
coupling as small. To this end, we consider the parameters
C and C to be proportional to the square of the electric
charge, α ¼ e2

4π, and we will drop terms of Oðα2Þ in what
follows.
For processes with only on-shellΦ states, it turns out that

observables, such as the amplitude for the Compton
scattering process γ þ Φ → γ þ Φ, depend only on a
particular linear combination of low-energy parameters,
Cþ C. For virtual Φ states, the diagrammatic analysis is
more involved; but, off-shell contributions from the
equation-of-motion operator generally can be removed in
the renormalization of the theory. Because the diagram-
matic approach is cumbersome, we handle the removal of
redundant operators by employing field redefinitions, see
[26] and references therein. For the toy model, we invoke
the field redefinition

Φ ¼
!
1 − C

2M4
F2

"
Φ0; (5)

which corresponds to dressing the scalar field with photons.
After field redefinition, the theory is described by the
Lagrange density

L0 ¼ DμΦ0DμΦ0 −M2Φ0†Φ0 þ C0

2M4
Φ0†Φ0∂2F2 þOðα2Þ;

(6)

with C0 ¼ Cþ C. The operator related by equations of
motion has now been removed. The coefficient C0 can be
chosen so that Eq. (6) reproduces S-matrix elements for
processes involving the composite scalar and photons. This
procedure exposes that on-shell processes depend only
on C0. In Eq. (3), additional dependence on the parameterC
that can arise from virtual Φ contributions in loop diagrams
must be canceled by the counterterms necessary to renorm-
alize the theory. In this way, the theories described by
Eqs. (3) and (6) are equivalent.
Now consider the toy-model Lagrange density for the

case where Fμν is a time-dependent external field. The
explicit time dependence introduced eliminates the pos-
sibility of an on-shell condition. As a result, one cannot
appeal to a renormalization prescription to fix the behavior
of the two-point function at the single-particle pole,
because there are no such poles. Consequently the

parameters C and C can be resolved at the level of the
Green’s function.4 Suppose we start with the reduced
theory described by Eq. (6). The propagator for Φ0 we
write as G0ðx; yÞ, with

G0ðx; yÞ ¼ h0jTfΦ0ðxÞΦ0†ðyÞgj0i: (7)

Starting with the theory in Eq. (3), on the other hand,
the propagator for Φ we write as Gðx; yÞ. This propagator
can be deduced simply5 by utilizing the field redefinition
in Eq. (5)

Gðx; yÞ ¼ h0jTfΦðxÞΦ†ðyÞgj0i

¼
#
1 −

C
2M4

½F2ðxÞ þ F2ðyÞ&
$
G0ðx; yÞ; (8)

where we have dropped contributions that are of order α2.
Notice this correlator necessarily has different time
dependence.6

The difference between propagators has an important
consequence for the background field method in lattice
QCD computations. After computing correlation functions
of the scalar particle on the lattice, we must match the
behavior of the lattice-determined correlator with the
prediction from an effective hadronic theory. Without an

4Notice that the charged particle Green’s function is gauge
dependent. Implicitly included in the choice of external field is
the gauge, which is then fixed. We will derive results below for
particularly simple gauge choices; results in other gauges can
similarly be derived. While appending an electromagnetic gauge
link between operators in the two-point function will lead one
to gauge invariant Green’s functions, these Green’s functions
will then depend on the path chosen to link the operators. Path
dependence arises because flux threads loops transverse to the
electromagnetic fields.

5One can also compute the Φ propagator directly by treating
the operator with coefficient C in Eq. (3) as a perturbation. In this
approach, one works in coordinate space, and utilizes the Green’s
function identity ðD2

y þM2ÞGðx; yÞ ¼ iδðx − yÞ. The resulting
propagator is the same as Eq. (8), and eliminates possible
additional factors that could appear from carrying out the field
redefinition carefully at the level of the functional integral.

6It is useful to imagine the case of a time-independent
magnetic field, for which one has an on-shell condition. In this
case, the operator with coefficient C does not modify the
spectrum of the theory as can be shown by taking the temporal
Fourier transform of Eq. (8),

Gð~x; ~yjEÞ ¼
#
1 −

C
2M4

½F2ð~xÞ þ F2ð~yÞ&
$
G0ð~x; ~yjEÞ:

The residues at each energy pole, however, are different between
the reduced and unreduced theories. This difference reflects
perturbative corrections to the coordinate wave functions of
energy eigenstates. Without the explicit coordinate dependence
introduced by the magnetic field in this case, one could impose
the standard wave function renormalization condition which
would lead to on-shell Green’s functions that match, both poles
and residues.
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Time dependence of Green’s function could be altered if the external 
filed is time dependent.
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we assume Φ is a composite particle with charged con-
stituents. The electromagnetic gauge covariant derivatives
have the action

DμΦ ¼ ∂μΦþ iZAμΦ;

DμΦ† ¼ ∂μΦ† − iZAμΦ†: (4)

No power counting has been utilized in writing Eq. (3); in
this section, we merely select operators to illustrate our
point. It will prove useful to treat the electromagnetic
coupling as small. To this end, we consider the parameters
C and C to be proportional to the square of the electric
charge, α ¼ e2

4π, and we will drop terms of Oðα2Þ in what
follows.
For processes with only on-shellΦ states, it turns out that

observables, such as the amplitude for the Compton
scattering process γ þ Φ → γ þ Φ, depend only on a
particular linear combination of low-energy parameters,
Cþ C. For virtual Φ states, the diagrammatic analysis is
more involved; but, off-shell contributions from the
equation-of-motion operator generally can be removed in
the renormalization of the theory. Because the diagram-
matic approach is cumbersome, we handle the removal of
redundant operators by employing field redefinitions, see
[26] and references therein. For the toy model, we invoke
the field redefinition

Φ ¼
!
1 − C

2M4
F2

"
Φ0; (5)

which corresponds to dressing the scalar field with photons.
After field redefinition, the theory is described by the
Lagrange density

L0 ¼ DμΦ0DμΦ0 −M2Φ0†Φ0 þ C0

2M4
Φ0†Φ0∂2F2 þOðα2Þ;

(6)

with C0 ¼ Cþ C. The operator related by equations of
motion has now been removed. The coefficient C0 can be
chosen so that Eq. (6) reproduces S-matrix elements for
processes involving the composite scalar and photons. This
procedure exposes that on-shell processes depend only
on C0. In Eq. (3), additional dependence on the parameterC
that can arise from virtual Φ contributions in loop diagrams
must be canceled by the counterterms necessary to renorm-
alize the theory. In this way, the theories described by
Eqs. (3) and (6) are equivalent.
Now consider the toy-model Lagrange density for the

case where Fμν is a time-dependent external field. The
explicit time dependence introduced eliminates the pos-
sibility of an on-shell condition. As a result, one cannot
appeal to a renormalization prescription to fix the behavior
of the two-point function at the single-particle pole,
because there are no such poles. Consequently the

parameters C and C can be resolved at the level of the
Green’s function.4 Suppose we start with the reduced
theory described by Eq. (6). The propagator for Φ0 we
write as G0ðx; yÞ, with

G0ðx; yÞ ¼ h0jTfΦ0ðxÞΦ0†ðyÞgj0i: (7)

Starting with the theory in Eq. (3), on the other hand,
the propagator for Φ we write as Gðx; yÞ. This propagator
can be deduced simply5 by utilizing the field redefinition
in Eq. (5)

Gðx; yÞ ¼ h0jTfΦðxÞΦ†ðyÞgj0i

¼
#
1 −

C
2M4

½F2ðxÞ þ F2ðyÞ&
$
G0ðx; yÞ; (8)

where we have dropped contributions that are of order α2.
Notice this correlator necessarily has different time
dependence.6

The difference between propagators has an important
consequence for the background field method in lattice
QCD computations. After computing correlation functions
of the scalar particle on the lattice, we must match the
behavior of the lattice-determined correlator with the
prediction from an effective hadronic theory. Without an

4Notice that the charged particle Green’s function is gauge
dependent. Implicitly included in the choice of external field is
the gauge, which is then fixed. We will derive results below for
particularly simple gauge choices; results in other gauges can
similarly be derived. While appending an electromagnetic gauge
link between operators in the two-point function will lead one
to gauge invariant Green’s functions, these Green’s functions
will then depend on the path chosen to link the operators. Path
dependence arises because flux threads loops transverse to the
electromagnetic fields.

5One can also compute the Φ propagator directly by treating
the operator with coefficient C in Eq. (3) as a perturbation. In this
approach, one works in coordinate space, and utilizes the Green’s
function identity ðD2

y þM2ÞGðx; yÞ ¼ iδðx − yÞ. The resulting
propagator is the same as Eq. (8), and eliminates possible
additional factors that could appear from carrying out the field
redefinition carefully at the level of the functional integral.

6It is useful to imagine the case of a time-independent
magnetic field, for which one has an on-shell condition. In this
case, the operator with coefficient C does not modify the
spectrum of the theory as can be shown by taking the temporal
Fourier transform of Eq. (8),

Gð~x; ~yjEÞ ¼
#
1 −

C
2M4

½F2ð~xÞ þ F2ð~yÞ&
$
G0ð~x; ~yjEÞ:

The residues at each energy pole, however, are different between
the reduced and unreduced theories. This difference reflects
perturbative corrections to the coordinate wave functions of
energy eigenstates. Without the explicit coordinate dependence
introduced by the magnetic field in this case, one could impose
the standard wave function renormalization condition which
would lead to on-shell Green’s functions that match, both poles
and residues.
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Equation-of-motion operators

External field: Explicit time-dependence may prevent for the two-point 
function to develop a single particle pole. We should appeal to the 
Green’s function to resolve the parameters C1 and C2.

Fortunately, the modifications are overall constant for uniform EM fields.
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For uniform EM fields, it turns out that the relativistic effective theory 
for hadron is free from the subtlety of EoM operators.

No surface term & Weak field limit

we assume Φ is a composite particle with charged con-
stituents. The electromagnetic gauge covariant derivatives
have the action

DμΦ ¼ ∂μΦþ iZAμΦ;

DμΦ† ¼ ∂μΦ† − iZAμΦ†: (4)

No power counting has been utilized in writing Eq. (3); in
this section, we merely select operators to illustrate our
point. It will prove useful to treat the electromagnetic
coupling as small. To this end, we consider the parameters
C and C to be proportional to the square of the electric
charge, α ¼ e2

4π, and we will drop terms of Oðα2Þ in what
follows.
For processes with only on-shellΦ states, it turns out that

observables, such as the amplitude for the Compton
scattering process γ þ Φ → γ þ Φ, depend only on a
particular linear combination of low-energy parameters,
Cþ C. For virtual Φ states, the diagrammatic analysis is
more involved; but, off-shell contributions from the
equation-of-motion operator generally can be removed in
the renormalization of the theory. Because the diagram-
matic approach is cumbersome, we handle the removal of
redundant operators by employing field redefinitions, see
[26] and references therein. For the toy model, we invoke
the field redefinition

Φ ¼
!
1 − C

2M4
F2

"
Φ0; (5)

which corresponds to dressing the scalar field with photons.
After field redefinition, the theory is described by the
Lagrange density

L0 ¼ DμΦ0DμΦ0 −M2Φ0†Φ0 þ C0

2M4
Φ0†Φ0∂2F2 þOðα2Þ;

(6)

with C0 ¼ Cþ C. The operator related by equations of
motion has now been removed. The coefficient C0 can be
chosen so that Eq. (6) reproduces S-matrix elements for
processes involving the composite scalar and photons. This
procedure exposes that on-shell processes depend only
on C0. In Eq. (3), additional dependence on the parameterC
that can arise from virtual Φ contributions in loop diagrams
must be canceled by the counterterms necessary to renorm-
alize the theory. In this way, the theories described by
Eqs. (3) and (6) are equivalent.
Now consider the toy-model Lagrange density for the

case where Fμν is a time-dependent external field. The
explicit time dependence introduced eliminates the pos-
sibility of an on-shell condition. As a result, one cannot
appeal to a renormalization prescription to fix the behavior
of the two-point function at the single-particle pole,
because there are no such poles. Consequently the

parameters C and C can be resolved at the level of the
Green’s function.4 Suppose we start with the reduced
theory described by Eq. (6). The propagator for Φ0 we
write as G0ðx; yÞ, with

G0ðx; yÞ ¼ h0jTfΦ0ðxÞΦ0†ðyÞgj0i: (7)

Starting with the theory in Eq. (3), on the other hand,
the propagator for Φ we write as Gðx; yÞ. This propagator
can be deduced simply5 by utilizing the field redefinition
in Eq. (5)

Gðx; yÞ ¼ h0jTfΦðxÞΦ†ðyÞgj0i

¼
#
1 −

C
2M4

½F2ðxÞ þ F2ðyÞ&
$
G0ðx; yÞ; (8)

where we have dropped contributions that are of order α2.
Notice this correlator necessarily has different time
dependence.6

The difference between propagators has an important
consequence for the background field method in lattice
QCD computations. After computing correlation functions
of the scalar particle on the lattice, we must match the
behavior of the lattice-determined correlator with the
prediction from an effective hadronic theory. Without an

4Notice that the charged particle Green’s function is gauge
dependent. Implicitly included in the choice of external field is
the gauge, which is then fixed. We will derive results below for
particularly simple gauge choices; results in other gauges can
similarly be derived. While appending an electromagnetic gauge
link between operators in the two-point function will lead one
to gauge invariant Green’s functions, these Green’s functions
will then depend on the path chosen to link the operators. Path
dependence arises because flux threads loops transverse to the
electromagnetic fields.

5One can also compute the Φ propagator directly by treating
the operator with coefficient C in Eq. (3) as a perturbation. In this
approach, one works in coordinate space, and utilizes the Green’s
function identity ðD2

y þM2ÞGðx; yÞ ¼ iδðx − yÞ. The resulting
propagator is the same as Eq. (8), and eliminates possible
additional factors that could appear from carrying out the field
redefinition carefully at the level of the functional integral.

6It is useful to imagine the case of a time-independent
magnetic field, for which one has an on-shell condition. In this
case, the operator with coefficient C does not modify the
spectrum of the theory as can be shown by taking the temporal
Fourier transform of Eq. (8),

Gð~x; ~yjEÞ ¼
#
1 −

C
2M4

½F2ð~xÞ þ F2ð~yÞ&
$
G0ð~x; ~yjEÞ:

The residues at each energy pole, however, are different between
the reduced and unreduced theories. This difference reflects
perturbative corrections to the coordinate wave functions of
energy eigenstates. Without the explicit coordinate dependence
introduced by the magnetic field in this case, one could impose
the standard wave function renormalization condition which
would lead to on-shell Green’s functions that match, both poles
and residues.
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we assume Φ is a composite particle with charged con-
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matic approach is cumbersome, we handle the removal of
redundant operators by employing field redefinitions, see
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Φ ¼
!
1 − C

2M4
F2

"
Φ0; (5)

which corresponds to dressing the scalar field with photons.
After field redefinition, the theory is described by the
Lagrange density

L0 ¼ DμΦ0DμΦ0 −M2Φ0†Φ0 þ C0

2M4
Φ0†Φ0∂2F2 þOðα2Þ;

(6)

with C0 ¼ Cþ C. The operator related by equations of
motion has now been removed. The coefficient C0 can be
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must be canceled by the counterterms necessary to renorm-
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can be deduced simply5 by utilizing the field redefinition
in Eq. (5)

Gðx; yÞ ¼ h0jTfΦðxÞΦ†ðyÞgj0i

¼
#
1 −

C
2M4

½F2ðxÞ þ F2ðyÞ&
$
G0ðx; yÞ; (8)

where we have dropped contributions that are of order α2.
Notice this correlator necessarily has different time
dependence.6

The difference between propagators has an important
consequence for the background field method in lattice
QCD computations. After computing correlation functions
of the scalar particle on the lattice, we must match the
behavior of the lattice-determined correlator with the
prediction from an effective hadronic theory. Without an

4Notice that the charged particle Green’s function is gauge
dependent. Implicitly included in the choice of external field is
the gauge, which is then fixed. We will derive results below for
particularly simple gauge choices; results in other gauges can
similarly be derived. While appending an electromagnetic gauge
link between operators in the two-point function will lead one
to gauge invariant Green’s functions, these Green’s functions
will then depend on the path chosen to link the operators. Path
dependence arises because flux threads loops transverse to the
electromagnetic fields.

5One can also compute the Φ propagator directly by treating
the operator with coefficient C in Eq. (3) as a perturbation. In this
approach, one works in coordinate space, and utilizes the Green’s
function identity ðD2

y þM2ÞGðx; yÞ ¼ iδðx − yÞ. The resulting
propagator is the same as Eq. (8), and eliminates possible
additional factors that could appear from carrying out the field
redefinition carefully at the level of the functional integral.

6It is useful to imagine the case of a time-independent
magnetic field, for which one has an on-shell condition. In this
case, the operator with coefficient C does not modify the
spectrum of the theory as can be shown by taking the temporal
Fourier transform of Eq. (8),

Gð~x; ~yjEÞ ¼
#
1 −

C
2M4

½F2ð~xÞ þ F2ð~yÞ&
$
G0ð~x; ~yjEÞ:

The residues at each energy pole, however, are different between
the reduced and unreduced theories. This difference reflects
perturbative corrections to the coordinate wave functions of
energy eigenstates. Without the explicit coordinate dependence
introduced by the magnetic field in this case, one could impose
the standard wave function renormalization condition which
would lead to on-shell Green’s functions that match, both poles
and residues.
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On-shell process

second surprising feature for cancellation of the offend-
ing term.
Let us further scrutinize the appearance of the coupling

cX0
in Eq. (46). Notice the equation-of-motion equivalence

shown in Eq. (34) becomes invalid in a uniform electric
field due to the striking difference in evaluating the two
terms

½iD0; ~D · ~Eþ ~E · ~D# ¼ −2Z~E2;

½ ~D2; ~D · ~Eþ ~E · ~D# ¼ 0: (47)

Because the latter operator vanishes in a uniform electric
field, the corresponding coupling cX1

disappears from the
action. Consequently the Green’s function does not depend
on the linear combination cX1

− cX0
which enters on-shell

processes. Instead it depends on the parameter cX0
, which

we have yet to determine.
The fact that the equation-of-motion-related operator is

relevant to the uniform electric field case is further
evidenced by considering the field redefinition that can
be employed for its removal. To remove the operator with
coefficient cX0

from the HQET action, Eq. (29), we invoke
the field redefinition

ϕ ¼
!
1 − cX0

~D · ~Eþ ~E · ~D
8M3

"
ϕ0: (48)

Rewritten in terms of the ϕ0 field, the equation-of-motion
operator has been removed, and the related operator now
has coefficient cX1

− cX0
. In a uniform electric field, the

related operator vanishes by Eq. (47). The Green’s func-
tions for the fields ϕ and ϕ0, however, are different due
to the field redefinition employed in Eq. (48). In particular,
the Euclidean time correlation functions in a uniform
electric field

GEðτ; 0Þ ¼
Z

d~xh0jϕð~x; τÞϕ†ð0; 0Þj0iE ;

G0
Eðτ; 0Þ ¼

Z
d~xh0jϕ0ð~x; τÞϕ0†ð0; 0Þj0iE ; (49)

are related by

GEðτ; 0Þ ¼
!
1þ cX0

ZE2τ
4M3

"
GE

0ðτ; 0Þ: (50)

Hence the correlation functions have visibly different time
dependence. This difference between correlation functions,
moreover, can be alternately obtained by treating the cX0

term present in the action, Eq. (45), in perturbation theory.
Having argued that the cX0

term belongs in the HQET
action for a uniform electric field, we must determine
this parameter. A way to determine cX0

is to start with the
fully relativistic scalar propagator in an electric field, and

perform the HQET expansion. Matching the behavior of
the propagator order by order inM−1 will yield the value of
this parameter. Thought of in this way, the external electric
field problem requires an additional matching relation due
to the lack of an on-shell condition. The coefficient cX0

,
which cannot be resolved from on-shell processes, can be
determined at the level of Green’s functions.
Computing the Euclidean two-point correlation function

for ϕ directly from Eq. (45), we arrive at

GEðτ; 0Þ ¼ θðτÞ
#
1 −

ðZEÞ2τ3

6M
þ ðZEÞ4τ6

72M2

þ ðZEÞ4τ5

40M3
−
ðZEÞ6τ9

1296M3
− cNR

E2τ
16M3

$
: (51)

On the other hand, carrying out the 1=M expansion of
the relativistic correlation function GEðτ; 0Þ in Eq. (27),
and appropriately accounting for the difference in nor-
malization factors [see Eq. (58) below], we find the
difference between relativistic and nonrelativistic correla-
tors is given by

ΔGEðτ; 0Þ ¼ θðτÞ E2τ
16M3

ðcNR − cRÞ; (52)

where the coefficient cR arises from the relativistic corre-
lation function, and is given by

cR ¼ 32πM3αE þ 4Z2: (53)

This coefficient produces a perturbative correction to
the nonrelativistic initial energy having the form
ΔE ¼ − 1

2 ð4παE þ Z2

2M3Þ~E2, in Minkowski space. This
result is to be contrasted with that in Eq. (1), which was
obtained by incorrectly dropping the equation-of-motion
operator.
Requiring that the correlation functions match demands

that cNR ¼ cR, and allows us to determine

cX0
¼ −

1

2
cD − Z: (54)

Having determined this final parameter, the time depend-
ence of the HQET propagator in a uniform electric field is
fully specified. In practice, the HQET expansion is insuf-
ficient to describe lattice QCD data. While the external
electric field may be weak, large corrections will arise in the
long-time limit of the correlator. To this end, it is effica-
cious to include the Euclidean time τ in the power counting,
and thus we turn to NRQED.

3. Electric field: NRQED

The parameter cX0
can also be determined from carrying

out the matching of correlation functions using NRQED
power counting. This power counting, moreover, leads to a
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c2 ¼ c4 ¼ 1; cM ¼ 1

2
cD; cX1

− cX0
¼ 1

2
ðZ þ cDÞ;

cX2
¼ 0; cX4

¼ 2ZcD − cA2
: (33)

Taking into account these relations, there are five uncon-
strained parameters in the effective theory.
With the exception of the operator having coefficient cX0

,
the operators enumerated in Eq. (29) are identical to the
spin-independent operators found in [25]. For on-shell
processes involving ϕ, we furthermore have the operator
equivalence

ϕ† ½iD0; ~D · ~Eþ ~E · ~D&
8M3

ϕ¼eom − ϕ† ½ ~D
2; ~D · ~Eþ ~E · ~D&

16M4
ϕ;

(34)

which arises from applying the HQET equations of motion.
Consequently, there are only four independent parameters
required to describe on-shell process. As we will see,
however, the remaining parameter cX0

is necessary to
describe the Green’s functions in a uniform electric field.
Notice we did not write down all possible operators

related by the equations of motion. For example, operators
of the form ϕ†ðiD0Þnϕ for n > 1 have been excluded. The
difference between these operators and their counterparts
related by the equations of motion is a time-dependent
modification of Green’s functionsGðt0; tÞ by singular terms
involving derivatives of delta functions, ðD0Þn−1δðt0 − tÞ.
For this reason, these operators have been excluded.
Beyond such operators, there are further terms, for ex-
ample the operator ~E2ϕ†iD0ϕ, which can modify the time
dependence of Green’s functions in a nonconstant electric
field. We have omitted this operator, however, because it
only modifies Green’s functions by an overall constant in
uniform electric fields. In writing Eq. (29), we are claiming
that the operator with coefficient cX0

is the only operator
related by the equations of motion that is required to
address the case of uniform electromagnetic fields at
OðM−3Þ. The appearance of additional equation-of-motion
operators for uniform fields at OðM−4Þ has not been
considered.

B. One- and two-photon matching

To determine the phenomenological values of the non-
relativistic effective field theory coefficients, we perform
one- and two-photon matching similar to that carried out
above in the relativistic case. This is the scalar analogue of
nonrelativistic effective field theory matching carried out
in [25,35]. The resulting matching conditions will addi-
tionally establish the relations between relativistic and
nonrelativistic low-energy constants. As above, we restrict
our attention to processes involving either one virtual
photon, or two real photons.

For virtual photon scattering with the ϕ, we use the
relativistic decomposition of the form factor given in
Eq. (18). Kinematically, the momentum transfer squared
has the nonrelativistic expansion

q2 ¼ −~q2 þ 1

4M2
ð~q2 þ 2~q · ~pÞ þ ' ' ' : (35)

The matrix element of the charge density operator in turn
has the nonrelativistic expansion

h~p0jJ0j~pi ¼ Z −
~q2

3!
hr2iþ

~q4

5!
hr4i

þ ð~q2 þ 2~q · ~pÞ2

16M4

!
Z
2
þ 2

3
M2hr2i

"
; (36)

in an arbitrary frame. In the above expression, we
have accounted for the differing normalization between
relativistic and nonrelativistic states, see Eq. (58) below.
Computation of the same matrix element using the HQET
action in Eq. (29), produces the relations

cD ¼ 4

3
M2hr2i; cX3

¼ 2

15
M4hr4i;

cX1
− cX0

¼ 1

2

#
Z þ 4

3
M2hr2i

$
; cX2

¼ 0: (37)

The latter two relations are required by the imposition of
Lorentz invariance, see Eq. (33). Matching the spatial
current matrix element in an arbitrary frame confirms the
relation cM ¼ 1

2 cD.
Evaluation of the real Compton scattering amplitude is

simplified in the nonrelativistic limit. In the laboratory
frame, the final-state photon frequency satisfies the con-
dition ω0 ¼ ωþOðω=MÞ. Computing the Compton ampli-
tude up to OðM−3Þ accuracy, we determine the matching
conditions

16πM3αE ¼ ZcD − cA1
−
1

2
cA2

; 16πM3βM ¼ cA1
; (38)

which relate low-energy constants to the electric and
magnetic polarizabilities.
From one- and two-photon processes, we have thus

determined the four on-shell parameters of the effective
theory in terms of physical observables. The parameter cX0

cannot be determined in this way, because physical proc-
esses only depend on the linear combination cX1

− cX0
, cf.

Eq. (34). Comparing the matching conditions between
relativistic and nonrelativistic theories enables us to relate
the low-energy constants of the two effective theories. From
single-photon matching, we find the relations

cD ¼ 8C1; cX3
¼ 16C3; (39)
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second surprising feature for cancellation of the offend-
ing term.
Let us further scrutinize the appearance of the coupling

cX0
in Eq. (46). Notice the equation-of-motion equivalence

shown in Eq. (34) becomes invalid in a uniform electric
field due to the striking difference in evaluating the two
terms

½iD0; ~D · ~Eþ ~E · ~D# ¼ −2Z~E2;

½ ~D2; ~D · ~Eþ ~E · ~D# ¼ 0: (47)

Because the latter operator vanishes in a uniform electric
field, the corresponding coupling cX1

disappears from the
action. Consequently the Green’s function does not depend
on the linear combination cX1

− cX0
which enters on-shell

processes. Instead it depends on the parameter cX0
, which

we have yet to determine.
The fact that the equation-of-motion-related operator is

relevant to the uniform electric field case is further
evidenced by considering the field redefinition that can
be employed for its removal. To remove the operator with
coefficient cX0

from the HQET action, Eq. (29), we invoke
the field redefinition

ϕ ¼
!
1 − cX0

~D · ~Eþ ~E · ~D
8M3

"
ϕ0: (48)

Rewritten in terms of the ϕ0 field, the equation-of-motion
operator has been removed, and the related operator now
has coefficient cX1

− cX0
. In a uniform electric field, the

related operator vanishes by Eq. (47). The Green’s func-
tions for the fields ϕ and ϕ0, however, are different due
to the field redefinition employed in Eq. (48). In particular,
the Euclidean time correlation functions in a uniform
electric field

GEðτ; 0Þ ¼
Z

d~xh0jϕð~x; τÞϕ†ð0; 0Þj0iE ;

G0
Eðτ; 0Þ ¼

Z
d~xh0jϕ0ð~x; τÞϕ0†ð0; 0Þj0iE ; (49)

are related by

GEðτ; 0Þ ¼
!
1þ cX0

ZE2τ
4M3

"
GE

0ðτ; 0Þ: (50)

Hence the correlation functions have visibly different time
dependence. This difference between correlation functions,
moreover, can be alternately obtained by treating the cX0

term present in the action, Eq. (45), in perturbation theory.
Having argued that the cX0

term belongs in the HQET
action for a uniform electric field, we must determine
this parameter. A way to determine cX0

is to start with the
fully relativistic scalar propagator in an electric field, and

perform the HQET expansion. Matching the behavior of
the propagator order by order inM−1 will yield the value of
this parameter. Thought of in this way, the external electric
field problem requires an additional matching relation due
to the lack of an on-shell condition. The coefficient cX0

,
which cannot be resolved from on-shell processes, can be
determined at the level of Green’s functions.
Computing the Euclidean two-point correlation function

for ϕ directly from Eq. (45), we arrive at

GEðτ; 0Þ ¼ θðτÞ
#
1 −

ðZEÞ2τ3

6M
þ ðZEÞ4τ6

72M2

þ ðZEÞ4τ5

40M3
−
ðZEÞ6τ9

1296M3
− cNR

E2τ
16M3

$
: (51)

On the other hand, carrying out the 1=M expansion of
the relativistic correlation function GEðτ; 0Þ in Eq. (27),
and appropriately accounting for the difference in nor-
malization factors [see Eq. (58) below], we find the
difference between relativistic and nonrelativistic correla-
tors is given by

ΔGEðτ; 0Þ ¼ θðτÞ E2τ
16M3

ðcNR − cRÞ; (52)

where the coefficient cR arises from the relativistic corre-
lation function, and is given by

cR ¼ 32πM3αE þ 4Z2: (53)

This coefficient produces a perturbative correction to
the nonrelativistic initial energy having the form
ΔE ¼ − 1

2 ð4παE þ Z2

2M3Þ~E2, in Minkowski space. This
result is to be contrasted with that in Eq. (1), which was
obtained by incorrectly dropping the equation-of-motion
operator.
Requiring that the correlation functions match demands

that cNR ¼ cR, and allows us to determine

cX0
¼ −

1

2
cD − Z: (54)

Having determined this final parameter, the time depend-
ence of the HQET propagator in a uniform electric field is
fully specified. In practice, the HQET expansion is insuf-
ficient to describe lattice QCD data. While the external
electric field may be weak, large corrections will arise in the
long-time limit of the correlator. To this end, it is effica-
cious to include the Euclidean time τ in the power counting,
and thus we turn to NRQED.

3. Electric field: NRQED

The parameter cX0
can also be determined from carrying

out the matching of correlation functions using NRQED
power counting. This power counting, moreover, leads to a
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Uniform E field
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5

The time dependence of Green’s function is altered by field redefinition.

second surprising feature for cancellation of the offend-
ing term.
Let us further scrutinize the appearance of the coupling

cX0
in Eq. (46). Notice the equation-of-motion equivalence

shown in Eq. (34) becomes invalid in a uniform electric
field due to the striking difference in evaluating the two
terms

½iD0; ~D · ~Eþ ~E · ~D# ¼ −2Z~E2;

½ ~D2; ~D · ~Eþ ~E · ~D# ¼ 0: (47)

Because the latter operator vanishes in a uniform electric
field, the corresponding coupling cX1

disappears from the
action. Consequently the Green’s function does not depend
on the linear combination cX1

− cX0
which enters on-shell

processes. Instead it depends on the parameter cX0
, which

we have yet to determine.
The fact that the equation-of-motion-related operator is

relevant to the uniform electric field case is further
evidenced by considering the field redefinition that can
be employed for its removal. To remove the operator with
coefficient cX0

from the HQET action, Eq. (29), we invoke
the field redefinition

ϕ ¼
!
1 − cX0

~D · ~Eþ ~E · ~D
8M3

"
ϕ0: (48)

Rewritten in terms of the ϕ0 field, the equation-of-motion
operator has been removed, and the related operator now
has coefficient cX1

− cX0
. In a uniform electric field, the

related operator vanishes by Eq. (47). The Green’s func-
tions for the fields ϕ and ϕ0, however, are different due
to the field redefinition employed in Eq. (48). In particular,
the Euclidean time correlation functions in a uniform
electric field

GEðτ; 0Þ ¼
Z

d~xh0jϕð~x; τÞϕ†ð0; 0Þj0iE ;

G0
Eðτ; 0Þ ¼

Z
d~xh0jϕ0ð~x; τÞϕ0†ð0; 0Þj0iE ; (49)

are related by

GEðτ; 0Þ ¼
!
1þ cX0

ZE2τ
4M3

"
GE

0ðτ; 0Þ: (50)

Hence the correlation functions have visibly different time
dependence. This difference between correlation functions,
moreover, can be alternately obtained by treating the cX0

term present in the action, Eq. (45), in perturbation theory.
Having argued that the cX0

term belongs in the HQET
action for a uniform electric field, we must determine
this parameter. A way to determine cX0

is to start with the
fully relativistic scalar propagator in an electric field, and

perform the HQET expansion. Matching the behavior of
the propagator order by order inM−1 will yield the value of
this parameter. Thought of in this way, the external electric
field problem requires an additional matching relation due
to the lack of an on-shell condition. The coefficient cX0

,
which cannot be resolved from on-shell processes, can be
determined at the level of Green’s functions.
Computing the Euclidean two-point correlation function

for ϕ directly from Eq. (45), we arrive at

GEðτ; 0Þ ¼ θðτÞ
#
1 −

ðZEÞ2τ3

6M
þ ðZEÞ4τ6

72M2

þ ðZEÞ4τ5

40M3
−
ðZEÞ6τ9

1296M3
− cNR

E2τ
16M3

$
: (51)

On the other hand, carrying out the 1=M expansion of
the relativistic correlation function GEðτ; 0Þ in Eq. (27),
and appropriately accounting for the difference in nor-
malization factors [see Eq. (58) below], we find the
difference between relativistic and nonrelativistic correla-
tors is given by

ΔGEðτ; 0Þ ¼ θðτÞ E2τ
16M3

ðcNR − cRÞ; (52)

where the coefficient cR arises from the relativistic corre-
lation function, and is given by

cR ¼ 32πM3αE þ 4Z2: (53)

This coefficient produces a perturbative correction to
the nonrelativistic initial energy having the form
ΔE ¼ − 1

2 ð4παE þ Z2

2M3Þ~E2, in Minkowski space. This
result is to be contrasted with that in Eq. (1), which was
obtained by incorrectly dropping the equation-of-motion
operator.
Requiring that the correlation functions match demands

that cNR ¼ cR, and allows us to determine

cX0
¼ −

1

2
cD − Z: (54)

Having determined this final parameter, the time depend-
ence of the HQET propagator in a uniform electric field is
fully specified. In practice, the HQET expansion is insuf-
ficient to describe lattice QCD data. While the external
electric field may be weak, large corrections will arise in the
long-time limit of the correlator. To this end, it is effica-
cious to include the Euclidean time τ in the power counting,
and thus we turn to NRQED.

3. Electric field: NRQED

The parameter cX0
can also be determined from carrying

out the matching of correlation functions using NRQED
power counting. This power counting, moreover, leads to a
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second surprising feature for cancellation of the offend-
ing term.
Let us further scrutinize the appearance of the coupling

cX0
in Eq. (46). Notice the equation-of-motion equivalence

shown in Eq. (34) becomes invalid in a uniform electric
field due to the striking difference in evaluating the two
terms

½iD0; ~D · ~Eþ ~E · ~D# ¼ −2Z~E2;

½ ~D2; ~D · ~Eþ ~E · ~D# ¼ 0: (47)

Because the latter operator vanishes in a uniform electric
field, the corresponding coupling cX1

disappears from the
action. Consequently the Green’s function does not depend
on the linear combination cX1

− cX0
which enters on-shell

processes. Instead it depends on the parameter cX0
, which

we have yet to determine.
The fact that the equation-of-motion-related operator is

relevant to the uniform electric field case is further
evidenced by considering the field redefinition that can
be employed for its removal. To remove the operator with
coefficient cX0

from the HQET action, Eq. (29), we invoke
the field redefinition

ϕ ¼
!
1 − cX0

~D · ~Eþ ~E · ~D
8M3

"
ϕ0: (48)

Rewritten in terms of the ϕ0 field, the equation-of-motion
operator has been removed, and the related operator now
has coefficient cX1

− cX0
. In a uniform electric field, the

related operator vanishes by Eq. (47). The Green’s func-
tions for the fields ϕ and ϕ0, however, are different due
to the field redefinition employed in Eq. (48). In particular,
the Euclidean time correlation functions in a uniform
electric field

GEðτ; 0Þ ¼
Z

d~xh0jϕð~x; τÞϕ†ð0; 0Þj0iE ;

G0
Eðτ; 0Þ ¼

Z
d~xh0jϕ0ð~x; τÞϕ0†ð0; 0Þj0iE ; (49)

are related by

GEðτ; 0Þ ¼
!
1þ cX0

ZE2τ
4M3

"
GE

0ðτ; 0Þ: (50)

Hence the correlation functions have visibly different time
dependence. This difference between correlation functions,
moreover, can be alternately obtained by treating the cX0

term present in the action, Eq. (45), in perturbation theory.
Having argued that the cX0

term belongs in the HQET
action for a uniform electric field, we must determine
this parameter. A way to determine cX0

is to start with the
fully relativistic scalar propagator in an electric field, and

perform the HQET expansion. Matching the behavior of
the propagator order by order inM−1 will yield the value of
this parameter. Thought of in this way, the external electric
field problem requires an additional matching relation due
to the lack of an on-shell condition. The coefficient cX0

,
which cannot be resolved from on-shell processes, can be
determined at the level of Green’s functions.
Computing the Euclidean two-point correlation function

for ϕ directly from Eq. (45), we arrive at

GEðτ; 0Þ ¼ θðτÞ
#
1 −

ðZEÞ2τ3

6M
þ ðZEÞ4τ6

72M2

þ ðZEÞ4τ5

40M3
−
ðZEÞ6τ9

1296M3
− cNR

E2τ
16M3

$
: (51)

On the other hand, carrying out the 1=M expansion of
the relativistic correlation function GEðτ; 0Þ in Eq. (27),
and appropriately accounting for the difference in nor-
malization factors [see Eq. (58) below], we find the
difference between relativistic and nonrelativistic correla-
tors is given by

ΔGEðτ; 0Þ ¼ θðτÞ E2τ
16M3

ðcNR − cRÞ; (52)

where the coefficient cR arises from the relativistic corre-
lation function, and is given by

cR ¼ 32πM3αE þ 4Z2: (53)

This coefficient produces a perturbative correction to
the nonrelativistic initial energy having the form
ΔE ¼ − 1

2 ð4παE þ Z2

2M3Þ~E2, in Minkowski space. This
result is to be contrasted with that in Eq. (1), which was
obtained by incorrectly dropping the equation-of-motion
operator.
Requiring that the correlation functions match demands

that cNR ¼ cR, and allows us to determine

cX0
¼ −

1

2
cD − Z: (54)

Having determined this final parameter, the time depend-
ence of the HQET propagator in a uniform electric field is
fully specified. In practice, the HQET expansion is insuf-
ficient to describe lattice QCD data. While the external
electric field may be weak, large corrections will arise in the
long-time limit of the correlator. To this end, it is effica-
cious to include the Euclidean time τ in the power counting,
and thus we turn to NRQED.

3. Electric field: NRQED

The parameter cX0
can also be determined from carrying

out the matching of correlation functions using NRQED
power counting. This power counting, moreover, leads to a
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which shows that these low-energy constants are determined
entirely from virtual photon couplings in the relativistic
theory. The two-photon matching conditions produce the
relations

cA1
¼ 2ðC2 − 4C0Þ; cA2

¼ 8ð2ZC1 − C2Þ: (40)

Notice the parameter cA2
has a piece ∝ C1 that arises from

a relativistic operator contributing exclusively to virtual
photon processes. This produces exact cancellation of the cD
term contributing to αE in Eq. (38), which is required
because αE can be determined from Compton scattering
with two real photons.
The remaining on-shell parameters of the nonrelativistic

theory are constrained by Lorentz invariance. For com-
pleteness, the remaining relations between nonrelativistic
and relativistic low-energy constants are

cM ¼ 4C1; cX1
−cX0

¼ 1

2
ðZþ8C1Þ; cX4

¼ 8C2: (41)

As far as on-shell processes are concerned, we can employ
the effective theory in Eq. (29) omitting the operator with
coefficient cX0

. This is not the case when we consider the
Green’s functions in a uniform electric field. We now turn
our attention to background electromagnetic fields.

C. Uniform external fields

We consider the nonrelativistic effective theory in back-
ground electromagnetic fields. First we show that there are
no complications for the case of a uniform magnetic field.
For a uniform electric field, we expose the difficulty of
dropping the operator with coefficient cX0

. We then
determine this coefficient by matching Green’s functions
calculated with HQET power counting and the correspond-
ing HQET expansion of the relativistic Green’s function.
The matching condition for cX0

is verified by repeating the
Green’s function matching with NRQED power counting.

1. Magnetic field

To match Green’s functions, let us first consider the case
of a uniform magnetic field specified, as above, by the
vector potential ~A ¼ −x2Bx̂1. In such an external field, the
HQET action reduces to

L ¼ ϕ†
~p⊥¼0

!
i∂0 −H þ H2

2M2
þ cA1

B2

8M3

"
ϕ~p⊥¼0; (42)

up to terms of orderM−5. Notice we have projected onto the
sector of zero transversemomentum ~p⊥ ¼ ðp1; p3Þ ¼ 0, for
simplicity; and, H is the harmonic oscillator Hamiltonian
given by H ¼ 1

2M ½−∂2
2 þ ðZBÞ2x22&. Expanding in the oscil-

lator basis, we see the energy eigenvalues have the form

ENR
n ¼ jZBj

M

#
nþ 1

2

$
−
ðZBÞ2

2M3

#
nþ 1

2

$
2

−
1

2
4πβMB2;

(43)

having traded the low-energy constant cA1
for the magnetic

polarizability βM through the matching condition, Eq. (38).
Comparing with the relativistic spectrum from Eq. (23), we
see they agree

En −M ¼ ENR
n þOðM−5Þ; (44)

to the orderwe areworking in theHQETexpansion.Because
the single-particle wave functions of the Landau levels also
agree, the two-point correlation function calculated in
HQET matches with the nonrelativistic expansion of the
relativistic correlation function. As expected, no operators
related by equations of motion are required for this case.

2. Electric field: HQET

Turning our attention to the case of a uniform electric
field, we first write the nonrelativistic action in Euclidean
space. Specifying a uniform electric field through the
vector potential ~A ¼ −Eτx̂3, as above, we have the
HQET action density

LE ¼ ϕ†
~p¼0

! ∂
∂τ þ

ðZEτÞ2

2M
−
ðZEτÞ4

8M3
þ cNRE2

16M3

"
ϕ~p¼0;

(45)

having projected onto the sector of vanishing three-
momentum for ease. Above, we employ the abbreviation

cNR ¼ −2cA1
− cA2

− 4ZcX0
; (46)

for the linear combination of low-energy constants multi-
plying the electric-field-squared operator. Corrections to
this action are of order M−5. The coefficient cNR is
surprising for two reasons. First it depends on the linear
combination of low-energy parameters −cA1

− 1
2 cA2

¼
16πM3αE − ZcD, where the left-hand side of the equation
makes use of the matching condition in Eq. (38). The E2

shift of the action depends on the electric polarizability αE
as it must; however, there is also a contribution from the
charge radius, cD, which is physically impossible because
the external field cannot probe virtual photon couplings.9

The second surprise is the appearance of the contribution
proportional to cX0

which arises from the operator related
by the equations of motion. To obtain the correct physics,
the first surprising feature of Eq. (46) actually requires the

9Without the equation-of-motion operator, we would set its
coefficient to zero, cX0

¼ 0, and accordingly the shift of the initial
energy arising from cNR in Eq. (45) appears in Minkowski space
exactly as shown in Eq. (1).
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NRQED matching with EOM ops
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2
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3M
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�
~

E

2 } (22)

��E( ~E) = �
✓
cA1 +

1

2
cA2 + 2ZcX0

◆
~

E

2

8M3

(23)

��E( ~E) =
1

2
4⇡↵E

~

E

2 } (24)

5

Determination of       

c2 ¼ c4 ¼ 1; cM ¼ 1

2
cD; cX1

− cX0
¼ 1

2
ðZ þ cDÞ;

cX2
¼ 0; cX4

¼ 2ZcD − cA2
: (33)

Taking into account these relations, there are five uncon-
strained parameters in the effective theory.
With the exception of the operator having coefficient cX0

,
the operators enumerated in Eq. (29) are identical to the
spin-independent operators found in [25]. For on-shell
processes involving ϕ, we furthermore have the operator
equivalence

ϕ† ½iD0; ~D · ~Eþ ~E · ~D&
8M3

ϕ¼eom − ϕ† ½ ~D
2; ~D · ~Eþ ~E · ~D&

16M4
ϕ;

(34)

which arises from applying the HQET equations of motion.
Consequently, there are only four independent parameters
required to describe on-shell process. As we will see,
however, the remaining parameter cX0

is necessary to
describe the Green’s functions in a uniform electric field.
Notice we did not write down all possible operators

related by the equations of motion. For example, operators
of the form ϕ†ðiD0Þnϕ for n > 1 have been excluded. The
difference between these operators and their counterparts
related by the equations of motion is a time-dependent
modification of Green’s functionsGðt0; tÞ by singular terms
involving derivatives of delta functions, ðD0Þn−1δðt0 − tÞ.
For this reason, these operators have been excluded.
Beyond such operators, there are further terms, for ex-
ample the operator ~E2ϕ†iD0ϕ, which can modify the time
dependence of Green’s functions in a nonconstant electric
field. We have omitted this operator, however, because it
only modifies Green’s functions by an overall constant in
uniform electric fields. In writing Eq. (29), we are claiming
that the operator with coefficient cX0

is the only operator
related by the equations of motion that is required to
address the case of uniform electromagnetic fields at
OðM−3Þ. The appearance of additional equation-of-motion
operators for uniform fields at OðM−4Þ has not been
considered.

B. One- and two-photon matching

To determine the phenomenological values of the non-
relativistic effective field theory coefficients, we perform
one- and two-photon matching similar to that carried out
above in the relativistic case. This is the scalar analogue of
nonrelativistic effective field theory matching carried out
in [25,35]. The resulting matching conditions will addi-
tionally establish the relations between relativistic and
nonrelativistic low-energy constants. As above, we restrict
our attention to processes involving either one virtual
photon, or two real photons.

For virtual photon scattering with the ϕ, we use the
relativistic decomposition of the form factor given in
Eq. (18). Kinematically, the momentum transfer squared
has the nonrelativistic expansion

q2 ¼ −~q2 þ 1

4M2
ð~q2 þ 2~q · ~pÞ þ ' ' ' : (35)

The matrix element of the charge density operator in turn
has the nonrelativistic expansion

h~p0jJ0j~pi ¼ Z −
~q2

3!
hr2iþ

~q4

5!
hr4i

þ ð~q2 þ 2~q · ~pÞ2

16M4

!
Z
2
þ 2

3
M2hr2i

"
; (36)

in an arbitrary frame. In the above expression, we
have accounted for the differing normalization between
relativistic and nonrelativistic states, see Eq. (58) below.
Computation of the same matrix element using the HQET
action in Eq. (29), produces the relations

cD ¼ 4

3
M2hr2i; cX3

¼ 2

15
M4hr4i;

cX1
− cX0

¼ 1

2

#
Z þ 4

3
M2hr2i

$
; cX2

¼ 0: (37)

The latter two relations are required by the imposition of
Lorentz invariance, see Eq. (33). Matching the spatial
current matrix element in an arbitrary frame confirms the
relation cM ¼ 1

2 cD.
Evaluation of the real Compton scattering amplitude is

simplified in the nonrelativistic limit. In the laboratory
frame, the final-state photon frequency satisfies the con-
dition ω0 ¼ ωþOðω=MÞ. Computing the Compton ampli-
tude up to OðM−3Þ accuracy, we determine the matching
conditions

16πM3αE ¼ ZcD − cA1
−
1

2
cA2

; 16πM3βM ¼ cA1
; (38)

which relate low-energy constants to the electric and
magnetic polarizabilities.
From one- and two-photon processes, we have thus

determined the four on-shell parameters of the effective
theory in terms of physical observables. The parameter cX0

cannot be determined in this way, because physical proc-
esses only depend on the linear combination cX1

− cX0
, cf.

Eq. (34). Comparing the matching conditions between
relativistic and nonrelativistic theories enables us to relate
the low-energy constants of the two effective theories. From
single-photon matching, we find the relations

cD ¼ 8C1; cX3
¼ 16C3; (39)
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Two-point function

One- & two-photon matching

Correct!

Matching relativistic and nonrelativistic Green’s function
Nonrelativistic expansion of relativistic QED - keeping EOM ops

Lee & Tiburzi (2014)
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Extension to a spin-half hadron is straightforward by including*
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Nonrelativistic correlation functions
• Correlation functions using NRQED

• However, no direct comparison with lattice correlators.

Easy & Well developed power counting

6

Compton scattering, can be extracted from lattice QCD
calculations straightforwardly.

III. CORRELATION FUNCTIONS

Having hadron e↵ective theories for a single hadron in
an external electromagnetic field including the non-trivial
equation-of-motion operators, one can calculate hadron
properties from lattice QCD by comparing the hadron
two-point correlation functions. Such correlation func-
tions are computed from the e↵ective action in eq. (1)
as well as in eq. (19). Although these two approaches
eventually arrive at the same answers for the low-energy
hadronic properties, they have their own di�culties: the
latter has no direction comparision with lattice QCD cor-
relators, while the former is lack of appropriate power
countings in general. In this section, we discuss these
di�culties and compute the Euclidean correlation func-
tions for a specific external field: a uniform either electric
or magnetic field.4

A. Nonrelativistic correlation functions

NRQED might be an ideal framework to compute sin-
gle hadron propagators at low energy because of the rel-
atively simple form of the propagators, and well devel-
oped power countings for a small velocity v ⇠ | ~D|/M
and a weak field |~E|/M (| ~B|/M) in the nonrelativistic
limit, where ~E = �i ~E. As an example, we consider the
case of a uniform electric field along x3-direction speci-
fied by the vector potential, ~A = �E⌧ x̂3. Notice that the
correlation functions are gauge variant. According to the
NRQED power countings in whichD4 and ~D2 both count
as O(v�2), the Euclidean time ⌧ and the electric field E
scale as v�2 and v3, respectively. Projecting onto van-
ishing three-momentum, we have the NRQED Euclidean
action density up to order v6 5,

L =  †
~p=0


@

@⌧
+

(ZE⌧)2
2M

� (ZE⌧)4
8M3

+
(ZE⌧)6
16M5

+ cNR
E2

16M3

�
 ~p=0,

(30)

4 Notice that through this section all operators are defined in
the Euclidean spsce-time, where the metric is given by ⌘µ⌫ =
{1, 1, 1, 1}. The conversions from the Minkowski space-time
xµ = {t, ~x} to the Euclidean space-time xµ = {~x, ⌧} are achieved
by the Wick rotation ⌧ = it. The Euclidean Dirac gamma ma-
trices, �4

E

= �0 and �i

E

= �i�i, satisfy the anti-commutation
relation {�µ

E

, �⌫

E

} = 2⌘µ⌫ . We omit the subscription E for con-
venience hereafter.

5 Compared with the NRQED action density in eq. (1), we add
one more term at O(M�5) which is the next-order relativistic
correction to the kinetic energy, because this term contributes at
O(v6) as like the electric polarizability term.

where cNR = 8M3(4⇡↵E) � 6(Z + )2. From the direct
integration over ⌧ , we can easily obtain the Green’s func-
tion

GNR(⌧) = ✓(⌧)exp


� (ZE)2⌧3

6M
+

(ZE)4⌧5
40M3

� (ZE)6⌧7
112M5

� cNR
E2⌧

16M3

�
. (31)

Although we find the simple expression of the single-
hadron correlation function in eq. (31), however, addi-
tional tasks are required to use this expression to fit stan-
dard relativistic lattice corrlators traced over the spinor-
space: before tracing the lattice correlators, one has to
perform the FW transformations

G̃NR(⌧) =
X

~x

h0|T+(~x, ⌧) ̃(~x, ⌧) ̃†(~0, 0)T�(~0, 0)|0i,

(32)

where  ̃ denotes the interpolating function of a spin-half
hadron and the sum is carried out over the whole spatial
lattice.6 The tranformation matrices are given by

T+(~x, ⌧) =
1 + �4

2
eM⌧eiS3(~x,⌧)eiS2(~x,⌧)eiS1(~x,⌧),

T�(~0, 0) =
1 + �4

2
, (33)

with Si being defined in the previous section. The non-
relativistic correlator G̃NR will be proportional to a 2⇥2
identity matrix up to corrections from higher order oper-
ators. Therefore, one might numerically justify the size
of such corrections by comparing the magnitudes of diag-
onal and o↵-diagonal components. The computation of
the FW transformations also demands larger computer
resources since it requires to keep all sixteen components
of the lattice correlators (???). Moreover, the additional
analyses of an error propagation about the measured
hadron mass from zero-field calcualtions as well as the
anomalous magnetic moment measured from other cal-
culations are required to estimate the systematic uncer-
tainty of G̃NR.

B. Relativistic correlation functions

Alternatively, one might calculate the relativistic Eu-
clidean correlation functions of a spin-half hadron in ex-

6 In the case of a charged scalar hadron, similarly, the nonrelativis-
tic lattice correlators have to be computed from the relativistic
ones in order to use NRQED to fit the lattice QCD data. Us-
ing the relation between the relativistic scalar field � and the
nonrelativistic scalar field �, �(x) = N (x)�(x), we obtain

G̃NR(⌧) =
X

~x

h0|N (~x, ⌧)�̃(~x, ⌧)�̃†(~0, 0)|0i,

where N (~x, ⌧) = [4(M2 � ~D2)]1/4eM⌧ and �̃ denotes the inter-
polating field for the scalar hadron.
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By matching eq. (18) with the non-relativistic Lagrangian, we have
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There are four unkonwn coe�cients in the non-relativistic Lagrangian, c
D

, c

A1 , cA2 , cX3 ,
where rests of the coe�cients are constrained by following relations;
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6. at the order up to O(v6)
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Scalar case

Spinor case
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mass, anomalous magnetic moment, ...

EoM ops. are necessary.

Normalization
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General theory 6= Reduced theory

General theory = Reduced theory (32)

L(3),spin

eff

=  

†(~x, t)2⇡i
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�

E1~� · ~E ⇥ ~̇
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Relativistic correlation functions

Uniform & Weak EM fields: Life becomes much simpler 
thanks to equations of motion.

Field redefinition

boost projection, integral representation

spin projection, Landau level Lee & Tiburzi (2014)

Detmold, Tiburzi, Walker-Loud (2010)

• Correlation functions using relativistic QED

Direct comparisons with lattice correlators are possible.

Calculate the correlation functions by treating    -term exactly.

Uniform E

Uniform B

7

ternal electric and magnetic fields

G(⌧) =

Z
d~x trh0| (~x, ⌧) ̄(~0, 0)|0i, (34)

where trace is performed over the spinor space. This
alternative is more natural to analyze the lattice data
without invoking further complications from the func-
tional transformations as in eq. (31). However, the cal-
culations of G(⌧) from the e↵ective theory are problem-
atic in genral: the power countings are ambiguous be-
cause D4�4 ⇠ M in the nonrelativistic limit. More-
over, the calculations of G(⌧) from the e↵ective action
including higher-dimensional operators are still compli-
cate even when we find the relevant operators in the
nonrelativistic limit as in eq. (19). Fortunately, we can
avoid such di�culties using the field redefinition if we

restrict our attension to uniform electric and magnetic
fields employing the gauge potentials Aµ = �Ex4�µ3 and
Aµ = �Bx2�µ1, respectively; the details are found in
Appendix A. Such choices of the background fields are
natural from the point of view of previous lattice QCD
simulations[4–13, 15, 16, 18].

1. Uniform magnetic field

With our gauge choice, Aµ = �Bx2�µ1, the x2 com-
ponent of momentum is not a good quantum number for
a charged spin-half hadron. In fact, the correlation func-
tion in eq. (34), which can be considered as the Fourier
transform to vanishing three-momentum ~p = 0, receives
contributions from an infinite tower of Landau levels.
Projection onto p1 = p3 = 0, we have the action den-
sity

L =  ̄p1=p3=0


�4@⌧ + �2@2 + iZB�1x2 +MB � B

2M
i�1�2

�
 p1=p3=0, (35)

where MB = M+ 1
2 4⇡�MB2. Note that the two-point correlation function has a definite pole structure and the long-

time behavior exhibits an exponential decay with the lowest energy. After taking inversion and using the Schwinger
proper time trick [25] 7, we arrive at

G⇤(⌧, x2) =
1

2

✓
��4

@

@⌧
� �2@2 +MB � iZB�1x2 +

B

2M
i�1�2

◆✓
cosh

B⌧

2M
+ i�3�5 sinh

B⌧

2M

◆

⇥
Z 1

0

dsp
2⇡s

✓
cosh

ZBs

2
� i�1�2 sinh

ZBs

2

◆
e�

⌧2

2s � 1
2 s(M2

B+2H), (36)

where H is the auxiliary quantum mechanical Hamiltonian in (x2, @2)-space. The closely spaced energy levels between
adjacent Lanadu levels characterized by �E = |ZB|M for weak external fields, makes it di�cult to use the standard
lattice spectroscopy. The correlation function in the long time limit still su↵ers from significant excited-state con-
taminations, which may lead us to an incorrect ground state. To improve the signal we isolate the ground state by
projecting the correlators onto the 0-th Landau level as suggested in [26].

G(⌧) =
Z

d~x  ⇤(0)(x2) trh0| (~x, ⌧) ̄(~0, 0)|0i, (37)

where  (0)(x) is the ground-state harmonic oscillator wave function,

 (0)(x) = e�
1
2 |ZB|x2

. (38)

In principle, we can project the correlators onto an arbitrary n-th Landau level using  (n)(x) and perform the proper-
time integration. It turns out that there are four positive energy eigenstates which can be disentangled by spin and
parity projectors, S± = (1⌥ i�1�2)/2 and P± = (1± �4)/2, respectively. The correlators have the form

G(sgn1,sgn2,n)(⌧) =

Z
dx2 

⇤(n)(x2)
1

2
tr [S±P±G⇤(⌧, x2)]

=
1

4

 
MBp

M2
B � sgn1ZB + |ZB|(2n+ 1)

+ sgn2

!
e�E(sgn1,sgn2,n)⌧ , (39)

7 Because the charged spin-half hadron in the uniform magnetic
field has definite energy eigenstates, it is convenient to take the
inversion in the k4-space. Then, the time dependent correlation

function G⇤(⌧, x2) can be obtained throught the Fourier trans-
formation.
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These operators can be eliminated by the field redefini-

tion,  0 =
⇣
1 + iC5 /DF 2

8M5 + (C4+C5)F
2

8M4

⌘
 00, which results

in

C 00
3 = C3 + C6 �

1

4
(C4 + C5). (A3)

Similar to the C6 term, we disregard the correction to
the anomalous magnetic moment at O(M�4).

In the case of the uniform magnetic field, we choose the
gauge potential Aµ = �Bx2�µ1 and the electromagnetic
stress-tensor is given by Tµ

⌫ = 1
2diag(B

2,�B2,�B2, B2).
In addition, we project the field on vanishing first and
third momentum, p1 = p3 = 0, as usual. Then, we have

C4 ̄0i(�0D0 � ~� · ~D) 0E2

2M4
+

C5 ̄0(D0D0 � ~D2) 0E2

2M5
.

(A4)

In contrast to the case of the uniform electric field, we
cannot simply use the equations of motion to eliminate
these terms. The norm of the kinetic momentum oper-
ator ~D is nothing but the auxiliary quantum mechan-
ical Hamiltonian of a harmonic oscillator in (@2, x2)-
space, ~D2 = �2H = @22 � Z2B2x2

2, where the cor-
responding energies are Landau levels (2n + 1)|ZB|.
For the lowest Landau level we might perturbatively
treat the kinetic momentum operator in the weak field
limit, B ⌧ M2. Using the field redefinition,  0 =⇣
1� (C4+C5)F

2

8M4 � C5i�
0D0F

2

8M5

⌘
 000, therefore, up to cor-

retions at O
�

B
M2

�
we have

C 000
3 = C3 + C6 +

1

4
(C4 + C5). (A5)

In conclusion, we obtain the reduced theory at
O(M�3) for a charged spin-half hadron in the uniform
external electric field

L =  ̄
h
i /D �M +



2M
�µ⌫F

µ⌫ + 2⇡↵EE
2
i
 , (A6)

and in the uniform external magnetic field

L =  ̄
h
i /D �M +



2M
�µ⌫F

µ⌫ + 2⇡�BB
2
i
 , (A7)

where ↵E = �C 00
3 /16⇡M

3 and �M = C 000
3 /16⇡M3, re-

spectively.

Appendix B: Euclidean torus

In this appencix, we investigate the two-point correla-
tion function on a continuous torus of length L in each
of three spatial directions. For a uniform magnetic field,
we keep the temporal extent to be infinite. The gauge
potential Aµ is periodic up to a gauge transformation,

AFV
1 (x+ x̂2L) = AFV

1 (x) + @1⇤(x), (B1)

with two other spatial directions are periodic. The gauge
transformation function forms ⇤(x) = �BLx1. Accord-
ingly the matter field must satisfy the relation, so called
magnetic periodic boundary condition [26, 27],

 FV (x+ x̂2L) = e�iZBLx1 FV (x), (B2)

with the other directions are periodic. This boundary
conditions require that the magnetic flux through the
x1-x2 plane is quantized by ZBL2 = 2⇡n�, where n�

the magnetic flux quantum of the torus [28–30]. The
ground state wave function on a torus, which satisfies
the magnetic periodicity, can be obtained by summing
images of the infinite volume wave function,

 FV (n)
0 (~x?) =

X

⌫

 (n)
0 (x2 + ⌫L)e�2⇡iN�⌫x1/L. (B3)

The finite volume version of eq. (39) is

GFV (n)(⌧) =

Z L/2

�L/2
d~x? ⇤FV (n)(~x?)

⇥ 1

2
tr[S±P±G⇤FV (⌧, ~x?)],

(B4)

where the correlation function on a torus is a sum of
images of the infinite volume correlation function,

G⇤FV (⌧, ~x?) =
X

n1,⌫

e2⇡in1/Le�2⇡iN�⌫x1/L

⇥G⇤
✓
⌧, x2 + ⌫L� n1

n�
L;�n1

n�
L

◆
.

(B5)

Appealing to the periodicity in x1 direction, we can
performe the compact integral over x1 which results in
�n1,n�(⌫1�⌫2), where ⌫1 and ⌫2 denote the winding num-
bers for the ground state wave function and the correla-
tion function, respectively. After perfoming the infinite
sum over n1, we obtain

G⇤FV (n)(⌧) =
X

⌫1,⌫2

Z L/2

�L/2
dx2 

⇤(n)
0 (x2 + ⌫1L)

⇥1

2
tr[S±P±G⇤(⌧, x2 + ⌫1L; (⌫1 � ⌫2)L)].

(B6)

The finite integral over x2 along with the infinite sum
over ⌫1 covers whole space over the x2 direction, and can
be replaced by an infinite integral over x2 with changing
the variable x2 + ⌫1 by x2. After performing the infinite
integral over x2, we finally arrive at

G⇤FV (n)(⌧) = ZG(sgn1,sgn2,n)(⌧), (B7)

where the finite overall constant Z is the infinite sum
over ⌫2, Z =

P
⌫2

e�⇡n�⌫
2
2 .
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General theory 6= Reduced theory

General theory = Reduced theory (37)

L(3),spin

eff
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†(~x, t)2⇡i
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       - and      - terms can be added to M trivially.
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Summary & Outlook

• In presence of external fields, EoM ops can modify the time-
dependence of Green’s function.

• Background field method + NRQED matching

• Extend to hadrons with higher spins.
spin-1, spin-3/2, ...

Lack of on-shell condition

consistent 
Retaining EoM ops 

• Relativistic correlation functions are practically useful for 
lattice QCD calculations.
Uniform & Weak E, B fields No EoM ops, Power counting

EFT is reduced by field redefinitions.

• Extend to non-uniform E, B field? Spin-polarizabilities

T
+

(~x, ⌧) =
1 + �

4

2
e

M⌧

e

iS(~x,⌧) (23)

T�(~0, 0) =
1 + �

4

2
(24)

N (~x, ⌧) = [4(M2 � ~

D

2)]1/4eM⌧ (25)

S

2

=
Z + 

4M2

�

0

~� · ~E (26)

C

1

2M4

�†�@2F 2 +
C

2

M

4

⇣
@

µ

�†
@

µ��M

2�†�
⌘

(27)

C

0

2M4

�0†�0
@

2

F

2 (28)

C

0 = C

1

+ C

2

(29)

� =

✓
1� C

2

2M4

F

2

◆
�0 (30)

=


1� C

2

2M4

[F 2(x) + F

2(y)]

�
G0(x, y) (31)

General theory 6= Reduced theory (32)
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