Background Feld Method and NRQED matching

ML \&B. CTIDunifPRD(89)054017(2014) WL \&BCTHukin progress

Jong Wan Lee
Gity: College of New York

Columbia Univ.
26 June 2014

Low-energy EM properties of hadrons

(magnetic moment, charge radius, electric \& magnetic polarizabilities, ...)

Lamb shift (2S(1/2)-2P(1/2))

Proton radius puzzle

 muonic hydrogenspectrum
R.Pohl, et al. (2010)
 e-p scattering \& hydrogen spectrum

Proton polarizability effect is the main source of uncertainty.
R.Pohl, R.Gilman, G.A.Miller, K.Pachucki (2013)

Lattice QCD approach

Current insertion method

$$
F\left(q^{2}\right)=Z+\frac{1}{3!} q^{2}\left\langle r^{2}\right\rangle+\cdots
$$

Background field method

(1) calculate lattice two-point correlation functions in the presence of classical external EM fields.
(2) compare with the EFT predictions.
e.g) Energy shift by a uniform electric field for neutron

NRQED matching for hadron

NRQED action density

$$
\begin{aligned}
\mathcal{L}= & \phi^{\dagger}\left[i D_{0}+c_{2} \frac{\vec{D}^{2}}{2 M}+c_{D} \frac{[\vec{\nabla} \cdot \vec{E}]}{8 M^{2}}+c_{4} \frac{\vec{D}^{4}}{8 M^{3}}+i c_{M} \frac{\left\{D^{i},[\vec{\nabla} \times \vec{B}]^{i}\right\}}{8 M^{3}}\right. \\
& \left.+c_{A_{1}} \frac{\vec{B}^{2}-\vec{E}^{2}}{8 M^{3}}-c_{A_{2}} \frac{\vec{E}^{2}}{16 M^{3}}\right] \phi
\end{aligned} \begin{array}{ll}
\text { Caswell \& Lepage (1986) } & \text { Kinoshita \& Nio(I996) } \\
& \text { Manohar (I997) }
\end{array}
$$

One- \& two-photon matching Hill \& Paz (201I)

$$
\begin{align*}
c_{D} & =\frac{4}{3} M^{2}\langle r\rangle^{2} \tag{2014}\\
16 \pi M^{3} \alpha_{E} & =Z c_{D}-c_{A_{1}}-\frac{1}{2} c_{A_{2}}
\end{align*}
$$

Two-point function

$$
-\delta E(\vec{E})=-\left(c_{A_{1}}+\frac{1}{2} c_{A_{2}}\right) \frac{\vec{E}^{2}}{8 M^{3}}
$$

charge radius

NRQED matching for hadron

NRQED action density

$$
\begin{aligned}
\mathcal{L}= & \phi^{\dagger}\left[i D_{0}+c_{2} \frac{\vec{D}^{2}}{2 M}+c_{D} \frac{[\vec{\nabla} \cdot \vec{E}]}{8 M^{2}}+c_{4} \frac{\vec{D}^{4}}{8 M^{3}}+i c_{M} \frac{\left\{D^{i},[\vec{\nabla} \times \vec{B}]^{i}\right\}}{8 M^{3}}\right. \\
& \left.+c_{A_{1}} \frac{\vec{B}^{2}-\vec{E}^{2}}{8 M^{3}}-c_{A_{2}} \frac{\vec{E}^{2}}{16 M^{3}}\right] \phi \quad \begin{array}{ll}
\text { Caswell \& Lepage (1986) } & \text { Kinoshita \& Nio(I996) } \\
& \text { Manohar (I997) }
\end{array}
\end{aligned}
$$

One- \& two-photon matching Hill \& Paz (2011)

$$
\begin{align*}
c_{D} & =\frac{4}{3} M^{2}\langle r\rangle^{2} \tag{2014}\\
16 \pi M^{3} \alpha_{E} & =Z c_{D}-c_{A_{1}}-\frac{1}{2} c_{A_{2}}
\end{align*}
$$

Two-point function

$$
-\delta E(\vec{E})=-\left(c_{A_{1}}+\frac{1}{2} c_{A_{2}}\right) \frac{\vec{E}^{2}}{8 M^{3}}
$$

charge radius (virtual)

EFT for Background field calculation

- Philosophy of EFT

$$
\begin{aligned}
& \begin{array}{l}
\text { Symmetry Gauge inv., Parity, Time-reversal, } \\
\text { Power countings } \quad \text { Inverse of mass, velocity, ... } \\
\text { No surface terms } \\
\text { Equations of motion }
\end{array} \text { Minimize the number of parameters } \\
& \text { Practically crucial }
\end{aligned}
$$

Conventional effective theories were developed with an assumption of the on-shell condition, where operators related by equations of motion are redundant and eliminated.

With background external fields,
the on-shell condition might be lost.

Equation-of-motion operators

- Toy model: relativistic scalar QED

$$
\mathcal{L}=D_{\mu} \Phi^{\dagger} D^{\mu} \Phi-M^{2} \Phi^{\dagger} \Phi+\underline{\frac{C_{1}}{2 M^{4}} \Phi^{\dagger} \Phi \partial^{2} F^{2}+\frac{C_{2}}{M^{4}} F^{2}\left(D_{\mu} \Phi^{\dagger} D^{\mu} \Phi-M^{2} \Phi^{\dagger} \Phi\right)}
$$

On-shell: Fields satisfy the classical equations of motion.
Off-shell: Unclear at a first glance. Loop calculations (complicate) are involved.

Equation-of-motion operators

- Toy model: relativistic scalar QED
Field redefinition $\quad \Phi=\left(1-\frac{C_{2}}{2 M^{4}} F^{2}\right) \Phi^{\prime}$

$$
C^{\prime}=C_{1}+C_{2}
$$

S-matrix elements are Equivalent.

$$
\mathcal{L}^{\prime}=D_{\mu} \Phi^{\prime} D^{\mu} \Phi^{\prime}-M^{2} \Phi^{\prime \dagger} \Phi^{\prime}+\frac{C^{\prime}}{2 M^{4}} \Phi^{\prime \dagger} \Phi^{\prime} \partial^{2} F^{2}
$$

C^{\prime} is chosen for the reduced action to reproduce S-matrix elements.

Equation-of-motion operators

External field: Explicit time-dependence may prevent for the two-point function to develop a single particle pole. We should appeal to the Green's function to resolve the parameters C_{1} and C_{2}.

$$
\begin{aligned}
\mathcal{G}^{\prime}(x, y) & =\langle 0| T\left\{\Phi^{\prime}(x) \Phi^{\prime \dagger}(y)\right\}|0\rangle \\
\mathcal{G}(x, y) & =\langle 0| T\left\{\Phi(x) \Phi^{\dagger}(y)\right\}|0\rangle \\
& =\left[1-\frac{C_{2}}{2 M^{4}}\left[F^{2}(x)+F^{2}(y)\right]\right] \mathcal{G}^{\prime}(x, y)
\end{aligned}
$$

Time dependence of Green's function could be altered if the external filed is time dependent.

$$
\text { General theory } \neq \text { Reduced theory }
$$

Equation-of-motion operators

External field: Explicit time-dependence may prevent for the two-point function to develop a single particle pole. We should appeal to the Green's function to resolve the parameters C_{1} and C_{2}.

$$
\begin{array}{rlr}
\mathcal{G}^{\prime}(x, y) & =\langle 0| T\left\{\Phi^{\prime}(x) \Phi^{\prime \dagger}(y)\right\}|0\rangle & \Phi=\left(1-\frac{C_{2}}{2 M^{4}} F^{2}\right) \Phi^{\prime} \\
\mathcal{G}(x, y) & =\langle 0| T\left\{\Phi(x) \Phi^{\dagger}(y)\right\}|0\rangle \\
& =\left[1-\frac{C_{2}}{M^{4}} F^{2}\right] \mathcal{G}^{\prime}(x, y) & \text { field redefinition }
\end{array}
$$

Fortunately, the modifications are overall constant for uniform EM fields.

$$
\text { General theory }=\text { Reduced theory }
$$

For uniform EM fields, it turns out that the relativistic effective theory for hadron is free from the subtlety of EoM operators.

No surface term \& Weak field limit

EoM operators in NRQED

NRQED action density including EoM operators

$$
\begin{aligned}
\mathcal{L}= & \phi^{\dagger}\left[i D_{0}+c_{2} \frac{\vec{D}^{2}}{2 M}+c_{D} \frac{[\vec{\nabla} \cdot \vec{E}]}{8 M^{2}}+c_{4} \frac{\vec{D}^{4}}{8 M^{3}}+i c_{M} \frac{\left\{D^{i},[\vec{\nabla} \times \vec{B}]^{i}\right\}}{8 M^{3}}\right. \\
& \left.+c_{A_{1}} \frac{\vec{B}^{2}-\vec{E}^{2}}{8 M^{3}}-c_{A_{2}} \frac{\vec{E}^{2}}{16 M^{3}}+c_{X_{0}} \frac{\left[i D_{0}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]}{8 M^{3}}\right] \phi
\end{aligned}
$$

On-shell process

$$
\begin{aligned}
& \phi^{\dagger} \frac{\left[i D_{0}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]}{8 M^{3}} \phi^{\mathrm{eom}}-\phi^{\dagger} \frac{\left[\vec{D}^{2}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]}{16 M^{4}} \phi \\
& \text { Id } \\
& \quad\left[i D_{0}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]=-2 Z \vec{E}^{2} \quad \neq \quad\left[\vec{D}^{2}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]=0 .
\end{aligned}
$$

The time dependence of Green's function is altered by field redefinition.

$$
\phi=\left(1-c_{X_{0}} \frac{\vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}}{8 M^{3}}\right) \phi^{\prime} \quad G_{\mathcal{E}}(\tau, 0)=\left(1+c_{X_{0}} \frac{Z \mathcal{E}^{2} \tau}{4 M^{3}}\right) G_{\mathcal{E}}^{\prime}(\tau, 0)
$$

NRQED matching with EOM ops

Determination of $c_{X_{0}}$
Matching relativistic and nonrelativistic Green's function
Nonrelativistic expansion of relativistic QED - keeping EOM ops

$$
c_{X_{0}} \frac{\left[i D_{0}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]}{8 M^{3}}
$$

$$
c_{X_{0}}=-Z-\frac{1}{2} c_{D} \text { Lee \&Tiburzi (20।4) }
$$

One- \& two-photon matching

$$
\begin{gathered}
c_{D}=\frac{4}{3} M^{2}\langle r\rangle^{2} \\
16 \pi M^{3} \alpha_{E}=Z c_{D}-c_{A_{1}}-\frac{1}{2} c_{A_{2}}
\end{gathered}
$$

Two-point function

$$
-\delta E(\vec{E})=-\left(c_{A_{1}}+\frac{1}{2} c_{A_{2}}+2 Z c_{X_{0}}\right) \frac{\vec{E}^{2}}{8 M^{3}}
$$

$$
-\delta E(\vec{E})=\frac{1}{2} 4 \pi \alpha_{E} \vec{E}^{2}
$$

Correct!

* Extension to a spin-half hadron is straightforward by including

$$
c_{X_{0}} \frac{\left[i D_{0}, \vec{D} \cdot \vec{E}+\vec{E} \cdot \vec{D}\right]}{8 M^{3}}+c_{X_{0}^{\prime}} \frac{\left[i D_{0}, i \vec{\sigma} \cdot(\vec{D} \times \vec{E}+\vec{E} \times \vec{D})\right]}{8 M^{3}}
$$

Nonrelativistic correlation functions

- Correlation functions using NRQED

Easy \& Well developed power counting EoM ops. are necessary.

- However, no direct comparison with lattice correlators.

Scalar case

$$
\begin{array}{cc}
\phi(x)=\mathcal{N}(x) \Phi(x) \quad \mathcal{N}(\vec{x}, \tau)=\left[4\left(M^{2}-\vec{D}^{2}\right)\right]^{1 / 4} e^{M \tau} \\
G_{\mathrm{NR}}(\tau)=\sum_{\vec{x}}\langle 0| \mathcal{N}(\vec{x}, \tau) \Phi(\vec{x}, \tau) \Phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle & \text { Normalization }
\end{array}
$$

Spinor case

$$
\begin{aligned}
& \psi(\vec{x}, \tau)= e^{i S(\vec{x}, \tau)} \Psi(\vec{x}, \tau) \quad G_{\mathrm{NR}}(\tau)=\sum_{\vec{x}}\langle 0| \mathcal{T}_{+}(\vec{x}, \tau) \Psi(\vec{x}, \tau) \Psi^{\dagger}(\overrightarrow{0}, 0) \mathcal{T}_{-}(\overrightarrow{0}, 0)|0\rangle \\
& \mathcal{T}_{+}(\vec{x}, \tau)=\frac{1+\gamma_{4}}{2} e^{M \tau} e^{i S(\vec{x}, \tau)} \quad \mathcal{T}_{-}(\overrightarrow{0}, 0)=\frac{1+\gamma_{4}}{2}
\end{aligned}
$$

Foldy-Wouthuysen transformation i.e. $S_{2}=\frac{Z+\kappa}{4 M^{2}} \gamma^{0} \vec{\gamma} \cdot \vec{E}$
\mathcal{N} and \mathcal{T}_{+}include measured parameters
\longrightarrow systematic errors mass, anomalous magnetic moment, ...

Relativistic correlation functions

- Correlation functions using relativistic QED

Direct comparisons with lattice correlators are possible.
Uniform \& Weak EM fields: Life becomes much simpler thanks to equations of motion.

Field redefinition
Uniform E

$$
\mathcal{L}=\bar{\Psi}\left[i \not D-M+\frac{\kappa}{4 M} \sigma_{\mu \nu} F^{\mu \nu}+2 \pi \alpha_{E} E^{2}\right] \Psi
$$

boost projection, integral representation
Detmold, Tiburzi, Walker-Loud (2010)
Uniform B

$$
\mathcal{L}=\bar{\Psi}\left[i \not D-M+\frac{\kappa}{4 M} \sigma_{\mu \nu} F^{\mu \nu}+2 \pi \beta_{M} B^{2}\right] \Psi
$$

spin projection, Landau level Lee \& Tiburzi (2014)
α_{E} - and β_{M} - terms can be added to M trivially.
Calculate the correlation functions by treating κ-term exactly.

Summary \& Outlook

- In presence of external fields, EoM ops can modify the timedependence of Green's function.

Lack of on-shell condition

- Background field method + NRQED matching consistent

Retaining EoM ops

- Relativistic correlation functions are practically useful for lattice QCD calculations.
Uniform \& Weak E, B fields No EoM ops, Power counting EFT is reduced by field redefinitions.
- Extend to hadrons with higher spins.
spin-1, spin-3/2, ...
- Extend to non-uniform E, B field? Spin-polarizabilities

$$
\mathcal{L}_{e f f}^{(3), \text { spin }}=\psi^{\dagger}(\vec{x}, t) 2 \pi i\left[\gamma_{E_{1}} \vec{\sigma} \cdot \vec{E} \times \dot{\vec{E}}-\gamma_{M_{1}} \vec{\sigma} \cdot \vec{B} \times \dot{\vec{B}}-\gamma_{E_{2}} \sigma^{i} E^{i j} B^{j}-\gamma_{M_{2}} \sigma^{i} B^{i j} E^{j}\right] \psi(\vec{x}, t)
$$

