Spectroscopy of charmed baryons from lattice QCD

M. Padmanath

June 23, 2014

- In collaboration with R. G. Edwards, N. Mathur and M. Peardon. (HSC)
- Computations performed on computational facilities at DTP, TIFR, Mumbai and TCHPC, Trinity College, Dublin.

- 4 周 ト 4 戸 ト 4 戸 ト

4 (u, d, s, c) degenerate flavors

3 x 3

4 (u, d, s, c) degenerate flavors

Spectroscopy of charmed baryons from lattice QCD

M. PADMANATH

- T-Institute of Physics, University of Graz (3/24)

3 N

ヨート 3

Ensemble details

Lattices generated by Hadron Spectrum Collaboration.

- Dynamical configurations $(N_f = 2 + 1)$.
- Anisotropic lattices with $\xi = a_s/a_t \sim 3.5$.
- Lattice spacing : $a_s = 0.12$ fm
- Lattice size : $16^3 \times 128$.
- Statistics : 96 cfgs and 4 time sources.

R. G. Edwards, et al. Phys. Rev. D 78, 054501 (2008)

- Clover Fermions with stout smeared spatial links
- Quark fields : Distilled M. Peardon et al., PRD 80, 054506 (2009)

Caveat $m_\pi \sim 400$ MeV

Spectroscopy : baryon operator construction

- Aim : Spectroscopy including excited states. Local operators → low lying states. Extended operators → States with radial and orbital excitations.
- Proceeds in two steps

Construct continuum operators with well defined quantum no.s. Reduce/subduce into the irreps of the reduced symmetry.

- Used set of baryon continuum operators of the form $\Gamma^{\alpha\beta\gamma}q^{\alpha}q^{\beta}q^{\gamma}$, $\Gamma^{\alpha\beta\gamma}q^{\alpha}q^{\beta}(D_{i}q^{\gamma})$ and $\Gamma^{\alpha\beta\gamma}q^{\alpha}q^{\beta}(D_{i}D_{j}q^{\gamma})$
- Excluding the color part, the flavor-spin-spatial structure

 $\mathcal{O}^{[J^{\mathcal{P}}]} = \left[\mathcal{F}_{\Sigma_{\mathcal{F}}} \otimes \mathcal{S}_{\Sigma_{\mathcal{S}}} \otimes \mathcal{D}_{\Sigma_{\mathcal{D}}}\right]^{J^{\mathcal{P}}}.$

 γ-matrix convention : γ₄ = diag[1,1,-1,-1]; Non-relativistic → purely based on the upper two component of *q*. Relativistic → All operators except non-relativistic ones.

• Subset of $D_i D_j$ operators that include $[D_i, D_j] \sim F_{ij} \rightarrow$ hybrid.

No. of interpolating operators

Ω_{ccc}							Λ_{cdu}						
	6	\tilde{i}_1	ŀ	4	C	2		0	51	ŀ	ł	G	2
	g	и	g	и	g	и		g	и	g	и	g	и
Total	20	20	33	33	12	12	Total	53	53	86	86	33	33
Hybrid	4	4	5	5	1	1	Hybrid	12	12	16	16	4	4
NR	4	1	8	1	3	0	NR	10	3	17	4	7	1

 $\Omega_{ccs}, \Xi_{ccu}, \Omega_{css}$ and Σ_{cuu}

	c35		-cuu·										
	G1		Н		G ₂			0	5 1	ŀ	H	6	2
	g	и	g	и	g	и		g	и	g	и	g	и
Total	55	55	90	90	35	35	Total	116	116	180	180	68	68
Hybrid	12	12	16	16	4	4	Hybrid	24	24	32	32	8	8
NR	11	3	19	4	8	1	NR	23	6	37	10	15	2

Ξω

R. G. Edwards, et al. Phys. Rev. D 84, 074508 (2011)

イロト イポト イヨト イヨト

Non-Relativistic operators : $SU(6) \times O(3)$

 Ω_{ccc}

$$\Omega_{cc}, \Xi_{cc}, \Omega_{css}$$
 and Σ_{cuu}

D	1/2	3/2	5/2	7/2
0	0	1	0	0
1	1	1	0	0
2 _h	1	1	0	0
2	2	3	2	1

D	1/2	3/2	5/2	7/2
0	1	1	0	0
1	3	3	1	0
2 _h	3	3	1	0
2	6	8	5	2

 Λ_c

D	1/2	3/2	5/2	7/2
0	1	0	0	0
1	3	3	1	0
2 _h	3	3	1	0
2	6	7	5	1

 Ξ_c

-				
D	1/2	3/2	5/2	7/2
0	2	1	0	0
1	6	6	2	0
2 _h	6	6	2	0
2	12	15	10	3

R. G. Edwards, et al. Phys. Rev. D 84, 074508 (2011)

M. PADMANATH

E nar

Generalized eigenvalue problem

Using this large operator basis, with definite J^P in the continuum limit, to build the correlation matrix

$$\mathcal{C}_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0
angle = \sum_n rac{Z_i^n Z_j^{n\dagger}}{2E_n} \exp^{-E_n t}$$

Solving the generalized eigenvalue problem for this correlation matrix

$$\mathcal{C}_{ij}(t) v_j^{(n)}(t,t_0) = \lambda^{(n)}(t,t_0) \mathcal{C}_{ij}(t_0) v_j^{(n)}(t,t_0)$$

• Principal correlators given by eigenvalues $\lambda_n(t, t_0) \sim (1 - A_n) \exp^{-m_n(t-t_0)} + A_n \exp^{-m'_n(t-t_0)}$ Energy estimates

• Eigenvectors related to the vacuum state matrix elements $Z_i^{(n)} = \langle 0 | \mathcal{O}_i | n \rangle = \sqrt{2E_n} \exp^{E_n t_0/2} v_j^{(n)\dagger} C_{ji}(t_0)$ Spin identification

> C. Michael and I. Teasdale. NPB215 (1983) 433 M. Lüscher and U. Wolff, NPB339 (1990) 222

Spin identification using overlap factors : (ccc, G_{1g})

Spin identification : $J > \frac{3}{2}$

- For example, a continuum operator $O = [ccc \otimes (\frac{3}{2}^+)_S^1 \otimes D_{L=2,S}^{[2]}]^{J=\frac{5}{2}}$. Projects on to $\frac{5}{2}^+$.
- In the continuum, $\langle 0|O|\frac{5}{2}^+\rangle = Z$.
- On lattice, O gets subduced over two lattice irreps H_g and G_{2g} .
- Then

$$\langle 0|O_{H_g}|^{5^+}_2 \rangle = Z_1 \alpha$$
 & $\langle 0|O_{G_{2g}}|^{5^+}_2 \rangle = Z_2 \beta$

where α and β are the Clebsch-Gordan coefficients.

• If "close" to the continuum, then $Z \sim Z_1 \sim Z_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Spin identification across multiple irreps : $5/2^+$

Joint fitting principal correlators for $J = 5/2^+$

M. PADMANATH

Institute of Physics, University of Graz (12/24)

- B

Ω_{ccc} spectrum

Magenta ellipses : States with strong non-relativistic content. Boxes with thick border : States with strong hybrid nature.

Spectroscopy of charmed baryons from lattice QCD

M. PADMANATH

Institute of Physics, University of Graz (13/24)

Ω_{ccc} (3/2⁺) ground state

Spectroscopy of charmed baryons from lattice QCD

M. PADMANATH

Institute of Physics, University of Graz (14/24)

-

Ω_{cc} spectrum

Magenta rectangles : States with strong non-relativistic content. Boxes with thick border : States with strong hybrid nature.

M. PADMANATH

Ξ_{cc} spectrum

Magenta rectangles : States with strong non-relativistic content. Boxes with thick border : States with strong hybrid nature.

M. PADMANATH

m_q dependence of energy splittings

- Binding energy quark mass dependence. Mass of a hadron with n heavy quarks: $M_{H_{nq}} = nM_Q + A + B/m_Q + O(1/m_Q^2)$. Energy splittings : $a + b/m_Q + O(1/m_Q^2)$. Fits with heavy quark inspired functional forms.
- Consider the energy splittings

$$(\Xi_{cc}^* - D, \ \Omega_{cc}^* - D_s, \ \Omega_{ccc}^* - \eta_c \text{ and } \Omega_{ccb}^* - B_c), (\Xi_{cc}^* - D^*, \ \Omega_{cc}^* - D_s^*, \ \Omega_{ccc}^* - J/\psi \text{ and } \Omega_{ccb}^* - B_c^*)$$

Extrapolation of the fit to these splittings $\rightarrow m_{B_c} - m_{B_c} = 80 \pm 8 MeV$

Taking experimental input for $m_{B_c}
ightarrow m_{\Omega_{cch}^*} = 8050 ~\pm ~10~MeV$

Quark mass dependence

Spectroscopy of charmed baryons from lattice QCD

M. PADMANATH

Institute of Physics, University of Graz (18/24)

Ω_c (ssc) spectrum

Magenta rectangles : States with strong non-relativistic content.

M. PADMANATH

Institute of Physics, University of Graz (19/24)

Σ_c (uuc) spectrum

Magenta rectangles : States with strong non-relativistic content.

M. PADMANATH

Institute of Physics, University of Graz (20/24)

Ξ_c (usc) spectrum

Magenta rectangles : States with strong non-relativistic content. Boxes with thick border : States with strong hybrid nature.

M. PADMANATH

Λ_c (udc) spectrum

Magenta rectangles : States with strong non-relativistic content. Boxes with thick border : States with strong hybrid nature.

M. PADMANATH

Summary and conclusions

- Non-perturbative calculation of excited state spectroscopy of charm baryons.
- Non-relativistic spectrum pattern observed up to the second energy band.
- Spin and structure identification of the states using the vacuum state matrix elements.
- Energy splittings : Heavy quark inspired form gives good fit with m_b , m_c as well as m_s . For some, the fits even pass through m_l also.
- Extrapolations to bottom sector : $B_c^* B_c = 80 \pm 8$ MeV and $\Omega_{ccb}^* = 8050 \pm 10$ MeV.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

- Continuum extrapolation
- Charm baryons in multiple volumes : Finite size effects
- Calculations at physical light quark masses
- Inclusion of multihadron operators : resonance properties.