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Universality of effective string corrections.

The Effective String action is strongly constrained by Lorentz invariance. The
first few orders of the action are universal and coincide with those of the
Nambu-Goto action. This explains why at large enough interquark distance
N.-G. describes so well the behaviour of Wilson loops or Polyakov Loop
correlators.1 2 3

However at shorter distances deviations with respect to N.-G. cannot be
neglected and may be a signature of the ”true” fundamental string
description of Yang Mills theories.

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
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Effective string action

The most general action for the effective string can be written as a low energy
expansion in the number of derivatives of the transverse fields (”physical gauge”).

S = Scl +
σ

2

∫
d2ξ

[
∂αX · ∂αX + c2(∂αX · ∂αX )2 + c3(∂αX · ∂βX )2 + . . .

]
+ Sb ,

where:

Scl describes the usual (”classical”) perimeter-area term.

Sb is the boundary contribution characterizing the open string

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the
surface of minimal area representing the configuration around which we
expand

ξ0, ξ1 are the world-sheet coordinates.

In the Nambu-Goto case c2 = 1
8 and c3 = − 1

4
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Effective string and spacetime symmetries.

Symmetries of the action must hold in the
low energy regime.

String vacuum is not Poincaré invariant.

=⇒ Poincaré symmetry is
broken spontaneously.

ISO(D − 1, 1)→ SO(D − 2)⊗ ISO(1, 1). =⇒ 3(D − 2) Goldstone bosons?

Only D − 2 tranverse fluctuations of the string, where are the remaining
Goldstone bosons?

Goldstone’s theorem states that there is a massless mode for each broken
symmetry generator, but this counting cannot be naively extended to the case of
spontaneously broken spacetime symmetries1 .

1I. Low and A.V. Manohar, ”Spontaneously broken spacetime symmetries and Goldstone’s
theorem” Phys.Rev.Lett. 88 (2002) 101602
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Effective string and spacetime symmetries.

The remaining 2(D − 2) Lorentz transformations are realized non-linearly
and induce a set of recurrence relations among different terms in the
action.! 1

δbjε Xi = ε (−δijξb − Xj∂bXi )

1I. Low and A.V. Manohar, ”Spontaneously broken spacetime symmetries and Goldstone’s
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Non-linear realization and long-string expansion.

A few rules to construct the most general effective string action:

Broken translations:
X i → X i + ai . =⇒ Only field derivatives in the effective action.

Broken rotation in the plane (1, 2):

δbjε Xi = ε (−δijξb − Xj∂bXi )

Number of derivatives minus number of fields (weight) preserved.

Fields and coordinates rescaling =⇒ Derivative expansion:

∂aX
i −→ 1√

σR
∂aX

i .

Variations by broken rotation mix orders =⇒ Recurrence relations.

ISO(1, 1) and SO(D − 2) invariance =⇒ Contraction of indices.
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Effective string action is strongly constrained! 1 2 3

the terms with only first derivatives coincide with the Nambu-Goto action to
all orders in the derivative expansion.

In three dimensions the first allowed correction to the Nambu-Goto action
turns out to be an eight derivatives term which gives a contribution to the
interquark potential of the order 1/R7

The fact that the first deviations from the Nambu-Goto string are of high
order, especially in d = 3, explains why in early Monte Carlo calculations a
good agreement with the Nambu-Goto string was observed.

The effective string action is much more predictive than typical effective
models in particle physics!

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
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Geometrical description.

A more intuitive geometrical description of this result is obtained using the
original string action, without fixing the physical gauge.
The effective action is given by the most general mapping:

Xµ :M→ RD , µ = 0, · · · ,D − 1

M : two-dimensional surface describing the worldsheet of the string

RD : (flat) D dimensional target space RD of the gauge theory.

Main Result 1 :

The first few terms of the action compatible with Poincaré and parity
invariance are suitable combinations of geometric invariants constructed from
the induced metric gαβ = ∂αX

µ∂βXµ.

These terms can be classified according to their weight, i.e. the difference
between the number of derivatives minus the number of fields Xµ

1O. Aharony and Z. Komargodski, JHEP 1305 (2013) 118
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Geometrical description.

The only term of weight zero is the Nambu-Goto action

SNG = σ

∫
d2ξ
√
g ,

where g ≡ det(gαβ).

This term has a natural geometric interpretation: it measures the area swept
out by the worldsheet in space-time.

Fixing the physical gauge one finds (choosing an euclidean metric)

S = σ

∫
d2ξ
√
det(ηαβ + ∂αX · ∂βX )

∼ σRT +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Geometrical description.

At weight two, two new contributions appear:

S2,R = γ

∫
d2ξ
√
gR ,

S2,K = α

∫
d2ξ
√
gK 2,

where R denotes the Ricci scalar constructed from the induced metric, and
K ≡ ∆(g)X is the extrinsic curvature, where ∆(g) is the Laplacian in the
space with metric gαβ .

However both these terms can be neglected!

R is topological in two dimensions and, since in the long string limit in which
we are interested we do not expect topologically changing fluctuations, its
contribution is constant and can be neglected.

K 2 is proportional to the equation of motion of the Nambu-Goto Lagrangian
and can be eliminated by a suitable field redefinition.

Michele Caselle (UniTo) Effective String Theory 25 June 2014 11 / 25



Geometrical description.

Thus the first non trivial terms appear at level four and contribute to the
interquark potential with terms proportional to 1/R7 in agreement with the
derivation in the physical gauge.

However something must be missing in the picture since high precision simulations
of various 3d gauge models show large deviations with respect to the Nambu-Goto
prediction, which turn out to be much stronger than the expected 1/R7

corrections!

Interface free energy in the 3d Ising model1: Torus geometry, no boundary
corrections

Excited string states of SU(N) Yang-Mills theories2

Interquark Potential in the 3d U(1) gauge model 3

1M. Caselle, M. Hasenbusch and M. Panero, JHEP 0709 (2007) 117, arXiv:0707.0055
2A. Athenodorou, B. Bringoltz and M. Teper, JHEP 02, 030 (2011), arXiv:1007.4720 .
3D. Vadacchino, M. Caselle, R. Pellegrini and M. Panero, arXiv:1311.4071 .
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3d Ising interfaces
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3d U(1) Polyakov loops correlators
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Rigid String.

Our proposal: The extrinsic curvature term vanishes at tree level but may give a
non trivial contribution at one loop. 1

Thus, the effective string action up to term proportional to 1/R4 is

S = SNG + S2,K + Sb

with:

SNG ' Scl +
σ

2

∫
d2ξ

[
∂αX · ∂αX −

1

4
(∂αX · ∂αX )2

]
,

S2,K ' α
∫

d2ξ(∆X )2,

Sb ' b2

∫
dξ0 [∂1∂0X · ∂1∂0X ] .

Thus we are left with three free parameters (σ, α and b2) which will be fitted
comparing with the numerical data.

1M. Caselle, M. Panero, R. Pellegrini, D. Vadacchino arXiv:1406.5127
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Zeta-function regularization of the extrinsic curvature
action

The Gaussian part of the action is

S = σ

Nt∫
0

dt

R∫
0

dr

[
1 +

1

2
∂αX · ∂αX

]
+ α

Nt∫
0

dt

R∫
0

dr (∆X )2,

where R denotes the interquark distance, Nt is the system size in the Euclidean
time direction and ∆ is the two-dimensional Laplace operator
∆ = ∂2/∂t2 + ∂2/∂r2.
The interquark potential is defined as

V (R) = − lim
Nt→∞

1

Nt
ln

{∫
[DX ]e−S[X ]

}
,
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Zeta-function regularization

The Gaussian part of the action can be rewritten as

S = σ

Nt∫
0

dt

R∫
0

dr

[
1 +

1

2
X

(
1− 2α

σ
∆

)
(−∆)X

]
.

Carrying out the Gaussian integration, one obtains

V (R) = lim
Nt→∞

{
σR +

1

2Nt
Tr ln(−∆) +

1

2Nt
Tr ln

(
1− 1

m2
∆

)}
.

The parameter m = σ
2α , which has the dimensions of a mass, encodes the

contribution due to the extrinsic curvature.
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Zeta-function regularization

The operator traces are singular but can be evaluated using the zeta-function
regularization:

V (R) = σR + VNG(R) + Vext(R,m),

where VNG(R) and Vext(R,m) are the Gaussian limit of the Nambu-Goto and of the
extrinsic curvature contributions respectively:

VNG(R) ≡ lim
Nt→∞

1

2Nt
Tr ln(−∆) = − π

24R
,

Vext(R,m) ≡ lim
Nt→∞

1

2Nt
Tr ln

(
1− 1

m
∆

)
= − m

2π

∞∑
n=1

K1 (2nmR)

n
,

where Kα(z) denotes a modified Bessel function of the second kind.
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Analytical properties of Vext(R ,m)

Vext(R,m) has a logarithmic branching point at R = 0 and a set of square-root
singularities for negative values of (mR)2. The first is located at (mR)2 = −π2,
and defines the radius of convergence of the low mR expansion

Vext(R,m) = − π

24R
+

m

4
+ +

m2R

4π

(
ln

mR

2π
+ γE −

1

2

)
+
m2R

2π

∞∑
n=1

Γ
(

3
2

)
ζ(2n + 1)

Γ(n + 2)Γ
(
n − 1

2

) (mR

π

)2n

,

where γE = 0.5772156649 . . . is the Euler-Mascheroni constant and ζ(x) denotes
the Riemann zeta function.
In the large-R limit Vext(R,m) decreases exponentially. Its behavior is dominated
by the lowest-index Bessel function appearing in the sum:

Vext(R,m) ' −
√

m

16πR
e−2mR for R � 1

m
.

This is the typical behavior expected for a massive perturbation of a 2d CFT,
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Analytical properties of Vext(R ,m)

Vext(R,m) can be understood as a massive perturbation of the c = 1 free
bosonic theory. In fact, the combination

c0(mR) = −24R

π
Vext(R,m)

coincides with the ground state scaling function c0(mR) describing this
perturbation.

c0(mR) is a monotonically decreasing function of its argument and
interpolates between 1 for mR = 0 and 0 for mR →∞.

Notice the analogy with the Nambu-Goto case: while the Nambu-Goto model
can be described as an irrelevant massless perturbation of the c = 1 free
bosonic 2d CFT 1 2, the rigid string is described by a relevant massive
perturbation of the same CFT.

In the mR → 0 limit, the free bosonic theory is recovered: thus we find a
second “Lüscher” term, in addition to the one from VNG(R).

1S.Dubovsky, R. Flauger, V. Gorbenko JHEP1209 (2012) 044
2M. Caselle, D. Fioravanti, F. Gliozzi, R. Tateo JHEP07 (2013) 071
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Main differences between the NG and rigid strings

The field density profile around the string is (almost) a Gaussian in the case
of a Nambu-Goto string, while it decreases exponentially in the rigid string
case. This exponential defines a new scale, known as the London penetration
length in condensed matter theory, and as intrinsic width in confining gauge
theories

While in the Nambu-Goto case the string width increases logarithmically with
the interquark distance at zero temperature and linearly at high temperature,
the intrinsic width of the rigid string is constant

At very short distances the coefficient of the Lüscher term is doubled.
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3d U(1) model

Using duality Polyakov 1 was able to give a heuristic string description of the
model with a string action combining both the Nambu-Goto and the extrinsic
curvature terms. Following his derivation one finds that m is proportional to
the ”glueball” mass of the U(1) model

Including in the fits also the rigidity term dramatically improves the quality of
the fits, moreover the rigidity parameter scales exactly as predicted by
Polyakov. Details on this analysis in the next talk by Davide Vadacchino

The relevance of the rigid string correction for the U(1) theory is mainly due
to the nontrivial scaling behaviour of m0/

√
σ in this case.

m0√
σ

=
2πc0√
cσ

(2πβ)3/4e−π
2v(0)β/2,

As β increases toward the continuum limit the rigidity term becomes more
and more important and dominates in the continuum limit!

1Polyakov, Nucl. Phys. B486 (1997) 23
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Conclusions

The Effective String action is strongly constrained by Lorentz invariance.
The first few orders of the bulk and of the boundary action are universal

However deviations from the expected Nambu-Goto behaviour (in particular
in the 3d U(1) model suggest that something is missing in the picture

In the case of the 3d U(1) model, including also a rigidity term allows to
perfectly fit the data.

While the NG action was shown to be described by a massless perturbation of
the c = 1 free field theory (perturbed by the irrelevant operator TT̄ ), the
rigid string correction can be described as a massive perturbation of the
c = 1 free field theory.

The 3d U(1) lattice model turns out to be a perfect laboratory to study the
cross-over from a purely Nambu-Goto string at low β to a purely rigid string
at large β.
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Conclusions

The relevance of the rigid string correction for the U(1) theory is mainly due
to the nontrivial scaling behaviour of m0/

√
σ.

In SU(N) or Ising LGTs m0/
√
σ is constant, however it is well possible that a

rigidity term is present also in these theories.

It would not be dominant in the continuum limit but it could explain the
short scale deviations observed in recent simulations and the numerically
observed London penetration term in the string width, which otherwise would
be incompatible with a Nambu-Goto string.
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