Mesons upon low-lying Dirac mode exclusion

M.Denissenya, L.Ya.Glozman, C.B. Lang

University Graz

Lattice 2014, New York

Motivation

Massless QCD Lagrangian with two flavours is invariant under

$$
U(2)_{L} \otimes U(2)_{R}=U(1)_{A} \otimes U(1)_{V} \otimes S U(2)_{A} \otimes S U(2)_{V}
$$

- $S U(2)_{A}$ is spontaneously broken $(\langle\bar{\psi} \psi\rangle \neq 0)$
- $U(1)_{A}$ is broken both spontaneously and anomalously

Chiral symmetry breaking effects are important for the hadron spectrum.
How would the hadron spectrum look like if we artificially remove the chiral symmetry breaking dynamics?

What is the primary physics for the binding force in hadrons?

Banks-Casher relation and SCSB

Low-lying eigenmodes of the Dirac operator encode the effects of $\mathrm{S} \chi \mathrm{SB}$

$$
\begin{aligned}
\langle 0| \bar{q} q|0\rangle & =-\pi \rho(0) \\
\rho(0) \neq 0 & \Longleftrightarrow S \chi S B
\end{aligned}
$$

Goal: isolate the effects of chiral symmetry breaking in hadrons by excluding the low-lying mode dynamics
Overlap Operator

$$
D(m)=\left(\rho+\frac{m}{2}\right)+\left(\rho-\frac{m}{2}\right) \gamma_{5} \operatorname{sign}\left(H_{w}\right)
$$

Satisfies Ginsparg-Wilson(1982) relation

$$
\gamma_{5} D+D \gamma_{5}=\frac{1}{\rho} D \gamma_{5} D(0)
$$

Quark propagators

We use stochastic all-to-all overlap fermion propagators provided by JLQCD Collaboration

Define reduced quark propagators

$$
\begin{equation*}
S_{R D(k)}(x, y)=\sum_{n=k+1}^{N} \frac{1}{\lambda_{n}} u_{n}(x) u_{n}^{\dagger}(y)=S_{100-k}+S_{S t o c h} \tag{1}
\end{equation*}
$$

- k is the number of excluded low-lying modes

Lattice setup

- dynamical $n_{f}=2, N_{S}^{3} \times N_{T}=16^{3} \times 32$ lattice size
- 100 conf, $a \sim 0.12 \mathrm{fm}, L \approx 1.9 \mathrm{fm}$
- $m_{\pi}=289(2) \mathrm{MeV}, Q_{\text {top }}=0$.
- $N_{r}=1, N_{d}=N_{c} \times N_{D} \times N_{T} / 2$ - noise dilution scheme

Meson propagators

$$
\begin{equation*}
G(t, x)=\left\langle\mathcal{O}(x) \mathcal{O}^{\dagger}(0)\right\rangle \tag{2}
\end{equation*}
$$

Disconnected (D)

$$
I=0
$$

$$
\begin{equation*}
G(t, x)=C+D \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
I=1 \tag{4}
\end{equation*}
$$

$$
G(t, x)=C
$$

Here we consider only $J=0,1$ non-exotic mesons

$\mathrm{J}=0$ Mesons

$\mathrm{J}=0$ mesons

Restoration of both $S U_{A}(2)$ and $U_{A}(1)$ symmetries requires

$$
C_{\pi}=C_{\delta} \& \& D_{\sigma}=D_{\eta_{2}}=0
$$

$J=0: \pi\left(\eta_{2}\right)-$ Connected vs. Disconnected

$$
k=0
$$

$$
k=2
$$

$J=0: \pi\left(\eta_{2}\right)-$ Connected vs. Disconnected

$$
k=10
$$

$$
J=0: \delta(\sigma)
$$

$$
C_{\sigma}=C_{\delta}+D_{\sigma}{ }^{0}
$$

compare with

$$
C_{\eta_{2}}=C_{\pi}+D \eta_{\eta_{2}}^{0}
$$

$J=0$: isoscalar / isovector correlators

$S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{A}$ symmetry is restored What about the bound states?

$J=0: \pi$ - states

No pion ground state - no pseudo-Goldstone boson in the system
$k>20: \sigma, \eta_{2}, \delta$ are identical to the π states pattern

$\mathrm{J}=1$ Mesons

$\mathrm{J}=1$:

Multiplets of the parity-chiral group $S U(2)_{L} \otimes S U(2)_{R} \otimes C_{i}$

$$
\begin{aligned}
& R \\
& \text { Mesons }\left(I, J^{P C}\right) \\
& (0,0) \\
& \omega\left(0,1^{--}\right) \longleftrightarrow f_{1}\left(0,1^{++}\right) \\
& \left(\frac{1}{2}, \frac{1}{2}\right)_{a} \\
& \omega^{\prime}\left(0,1^{--}\right) \stackrel{S U(2) A}{\longleftrightarrow} b_{1}\left(1,1^{+-}\right) \\
& U(1)_{A} \uparrow \\
& \downarrow U(1)_{A} \\
& \left(\frac{1}{2}, \frac{1}{2}\right)_{b} \\
& (1,0) \oplus(0,1) \\
& h_{1}\left(0,1^{+-}\right) \underset{S U(2)}{\longrightarrow} \rho^{\prime}\left(1,1^{--}\right) \\
& a_{1}\left(1,1^{++}\right) \stackrel{S U(2)_{A}}{\longleftrightarrow} \rho\left(1,1^{--}\right)
\end{aligned}
$$

$\rho\left(1,1^{--}\right)$and $\rho^{\prime}\left(1,1^{--}\right)$are two independent ρ mesons

$\mathrm{J}=1: b_{1}\left(h_{1}\right)$ - Connected vs. Disconnected

$$
C_{h_{1}}=C_{b_{1}}+D{h_{1}}^{0} \quad \text { - similar to } \omega(\rho) \text { and } f_{1}\left(a_{1}\right)
$$

Disconnected pieces vanish as more low-lying eigenmodes are excluded
$\mathrm{J}=1: \rho$ - states
eigenvalues, $k=0$
 $k=2$

effective masses, $k=0$

- basis with 10 interpolators
- sufficient number of interpolators with two chiral structures
k - number of excluded low-lying eigenmodes
a_{1} - states

$$
k=0
$$

b_{1} - states

$$
k=0
$$

$$
k=10
$$

$$
k=10
$$

k - number of excluded low-lying eigenmodes

$\mathrm{J}=1$: Mass evolution of mesons

k - number of excluded low-lying eigenmodes,
σ - energy gap

Summary

- Disconnected contributions become negligibly small upon exclusion of a tiny amount of the low-lying modes from the valence quark propagators
- Both $S U(2)_{L} \otimes S U(2)_{R}$ and $U_{A}(1)$ symmetries are restored in $J=0$ and $J=1$ meson sectors

In the chirally restored regime

- Ground states of $J=0$ mesons disappear
- All non-exotic $J=1$ mesons are degenerate with $M_{0} \sim 1 \mathrm{GeV}$ (hint: higher symmetry)

Please, check Glozman L.Ya. talk for more physics (Parralel 7F @ 14:15)

Special Thanks to

> S.Aoki, S. Hashimoto, T.Kaneko and

for the collaboration

Thank You for Your Attention!

