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Introduction

Consider the electromagnetic matrix element of the nucleon
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[

γµF1(q
2) +

iσµνqν
2mN

F2(q
2)

]

u(p, s) , (1)

From the standard ratio
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with Γ = Γk = 1
4(1 + γ0)γ5γk, one extracts the magnetic (Sachs) form factor GM(Q2) = F1(Q

2) + F2(Q
2)

Π(0, ~q; Γk;µ = i) =
1
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2EN (En +mN )
ǫijkqjGM(Q2) , (3)

where Q2 = −q2.

⇒ Due to the factor qj in Eq. (3) the magnetic moment GM (0) cannot be extracted directly

“Standard” solution: Assume parametrization for the momentum dependence and perform fit

Here: Apply a derivative to remove momentum dependence ∼ qj

lim
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d

dqj
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ǫijkGM (0) . (4)

There are multiple ways to achieve this on the lattice; leading to different summations in position space.

Position space methods (I) – ”continuum derivative”

Apply continuum-like derivative to ratio R(t; ~q; Γk;µ)
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•Only non-zero contribution comes from 3pt function C
µ
3pt(t; ~q; Γ)

• In finite volume at q2 = 0 we approximate the derivative of a δ–distribution in momentum space
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• This leads to residual t–dependence C
µ
3pt(t; ~q; Γ) ∼ exp(−∆Et), where ∆E = E(~q) −mN is the momentum

transfer between final and initial state and ∆E → 0 for L→ ∞
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•On our Nf = 2 + 1 + 1 test lattice (B55.32, L = 32, T = 64, MPS ≈ 373 MeV, 300 confs) the t dependence
is non-negligible

• No plateau is reached for the given L (shown in right panel for ts = 12)

⇒ Need different method to remove t–dependence!

Position space methods (II) – ”y-summation”

Start from the standard ratio R(t; ~q; Γk;µ) in position space for all available on-axis momenta ~q:

• Perform plateau fits for each on-axis ~q and sum over all directions → R(q)

• Apply FT R(q)
FT
−−→ R(y) to obtain R(y) with R(y) ≈ −R(−y) (up to stat. fluctuations) in position space

• In practice, a cutoff qmax is required in this FT → Check for convergence!

•With n = y/a we average over pos. and neg. y: R(y) =

{
+R(n), n = 0, ..., N/2
−R(N − n), n = N/2 + 1, ..., N − 1, N = L/a

.

• Transform R̄(n) back to momentum space in a way that allows for continuous momenta:
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(k

2

)
and Pn

(
k̂2

)
= Pn

((
2 sin

(k
2

))2)
≡

sin(nk)

sin
(
k
2

) we have

R(k̂) −R(0) = i

N/2−1
∑

n=1

k̂ Pn
(
k̂2)R(n) . (8)

• Finally taking the derivative w.r.t. k̂ and including kinematic factors in R(n) we obtain:

GM (k̂2) = i
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∑

n=1

Pn(k̂
2)R(n) . (9)

Preliminary results for GM
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• For sufficiently large on-axis momentum cutoff qmax = 4 the signal for R(y) is zero for y ≥ 8

• For the magnetic moment we obtain GM (0) = 4.02(37)stat, using ymax = 15a and qmax = 4 · (2π/L)

• The available data is described well by GM(k̂2) within its error (gray band)

Another application: gπNN

Considering the pseudoscalar isovector current P 3
phys = ψ̄τ3γ5ψ we have
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• In twisted mass basis: scalar isosinglet current S0
tm → disconnected diagrams (currently neglected)
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• (Bare) data reasonably described by GπNN (k̂2), using ymax = 15a and qmax = 4 · (2π/L)

• Significant excited states contaminations at small momenta → impact on slope of extrapolation

• Possibly scaling artifacts; e.g. MPS, fPS vs Mπ0, fπ0, disc loops missing ...

Conclusions

• Position space methods provide a promising approach to extract form factors directly at q2 = 0 without any
model dependence

• The preliminary result GM (0) = 4.02(37)stat agrees within errors with the one obtained from a fit using the
standard sequential method with 1200 confs GM (0) = 3.93(12)stat

• The spatial extend (L = 32) of our test lattice does not allow for an application of a continuum-like derivative

• Future plans:

– Include off-axis momenta; increase statistics for GM ; different lattice volume and lattice spacings

– Further explore gπNN ; e.g. include disconnected diagrams, renormalization, possibly larger source-sink
separations ...

– Apply “y-summation” method to electric dipole form factor of the neutron
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