Extraction of the isovector magnetic form factor of the nucleon at zero momentum

Constantia Alexandrou ${ }^{\text {a,b }}$, Martha Constantinou ${ }^{\text {a }}$, Giannis Koutsou ${ }^{\text {b }}$, Konstantin Ottnad ${ }^{\text {a }}$, Marcus Petschlies ${ }^{\text {b }}$

${ }^{a}$ Department of Physics, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus; b Cyprus Computation-based Science and Technology Research Center, 20 C. Kavafi Str., 2121 Nicosia, Cyprus

Introduction

Consider the electromagnetic matrix element of the nucleon
$\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J^{\mu}|N(p, s)\rangle \sim \bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{N}} F_{2}\left(q^{2}\right)\right] u(p, s)$, (1)
From the standard ratio

$$
\begin{align*}
R(t ; \vec{q} ; \Gamma ; \mu) & =\frac{\left\langle C_{3 p t}^{\mu}(t ; \vec{q} ; \Gamma)\right\rangle}{\left\langle C_{2 p t}\left(t_{s} ; \overrightarrow{0}\right)\right\rangle} \sqrt{\frac{\left\langle C_{2 p t}\left(\vec{q} ; t_{s}-t\right)\right\rangle\left\langle C_{2 p t}(\overrightarrow{0} ; t)\right\rangle\left\langle C_{2 p t}\left(\overrightarrow{0} ; t_{s}\right)\right\rangle}{\left\langle C_{2 p t}\left(\overrightarrow{0} ; t_{s}-t\right)\right\rangle\left\langle C_{2 p t}(\vec{q} ; t)\right\rangle\left\langle C_{2 p t}\left(\vec{q} ; t_{s}\right)\right\rangle}} \\
& \xrightarrow{t_{s}-t \gg 0, t \gg 0} \Pi(t ; \vec{q} ; \Gamma ; \mu), \tag{2}
\end{align*}
$$

with $\Gamma=\Gamma_{k}=\frac{1}{4}\left(1+\gamma_{0}\right) \gamma_{5} \gamma_{k}$, one extracts the magnetic (Sachs) form factor $G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)$

$$
\begin{equation*}
\Pi\left(0, \vec{q} ; \Gamma_{k} ; \mu=i\right)=\frac{1}{\sqrt{2 E_{N}\left(E_{n}+m_{N}\right)}} \epsilon_{i j k} q_{j} G_{M}\left(Q^{2}\right) \tag{3}
\end{equation*}
$$

where $Q^{2}=-q^{2}$.
\Rightarrow Due to the factor q_{j} in Eq. (3) the magnetic moment $G_{M}(0)$ cannot be extracted directly
"Standard" solution: Assume parametrization for the momentum dependence and perform fit
Here: Apply a derivative to remove momentum dependence $\sim q_{j}$

$$
\begin{equation*}
\lim _{q^{2} \rightarrow 0} \frac{d}{d q_{j}} \Pi\left(t ; \vec{q} ; \Gamma_{k} ; \mu=i\right)=\frac{1}{2 m_{N}} \epsilon_{i j k} G_{M}(0) . \tag{4}
\end{equation*}
$$

There are multiple ways to achieve this on the lattice; leading to different summations in position space.

Position space methods (I) - "continuum derivative"

Apply continuum-like derivative to ratio $R\left(t ; \vec{q} ; \Gamma_{k} ; \mu\right)$

$$
\begin{equation*}
\lim _{q^{2} \rightarrow 0} \frac{\partial}{\partial q_{j}} R\left(t ; \vec{q} ; \Gamma_{k} ; \mu\right)=\lim _{q^{2} \rightarrow 0} \frac{\left\langle\frac{\partial}{\partial q_{j}} C_{3 p t}^{\mu}\left(t ; \vec{q} ; \Gamma_{k}\right)\right\rangle}{\left\langle C_{2 p t}\left(t_{s} ; \overrightarrow{0}\right)\right\rangle}=\lim _{L \rightarrow \infty} \frac{1}{\left\langle C_{2 p t}\left(t_{s} ; \overrightarrow{0}\right)\right\rangle} \cdot\left\langle\sum_{x=-L / 2}^{L / 2-1} i x_{j} C_{3 p t}^{\mu}(t ; \vec{x})\right\rangle . \tag{5}
\end{equation*}
$$

- Only non-zero contribution comes from 3pt function $C_{3 p t}^{\mu}(t ; \vec{q} ; \Gamma)$
- In finite volume at $q^{2}=0$ we approximate the derivative of a δ-distribution in momentum space

$$
\begin{align*}
\sum_{\vec{x}} i x_{j} C_{3 p t}^{\mu}(t ; \vec{x}) & =\sum_{\vec{x}} i x_{j} \sum_{\vec{k}} \exp (i \vec{k} \cdot \vec{x}) C_{3 p t}^{\mu}(t ; \vec{k}) \\
& =\sum_{\vec{k}} \underbrace{\left(\sum_{\vec{x}} x_{j} \exp (i \vec{k} \cdot \vec{x})\right)}_{{ }_{L \rightarrow \infty} \frac{\partial}{\partial k_{j}} \delta(3)(\vec{k})} i C_{3 p t}^{\mu}(t ; \vec{k}) \tag{6}
\end{align*}
$$

- This leads to residual t-dependence $C_{3 p t}^{\mu}(t ; \vec{q} ; \Gamma) \sim \exp (-\Delta E t)$, where $\Delta E=E(\vec{q})-m_{N}$ is the momentum transfer between final and initial state and $\Delta E \rightarrow 0$ for $L \rightarrow \infty$

- On our $N_{f}=2+1+1$ test lattice ($B 55.32, L=32, T=64, M_{\mathrm{PS}} \approx 373 \mathrm{MeV}, 300$ confs) the t dependence is non-negligible
- No plateau is reached for the given L (shown in right panel for $t_{s}=12$)
\Rightarrow Need different method to remove t-dependence!

Position space methods (II) - " y-summation"

Start from the standard ratio $R\left(t ; \vec{q} ; \Gamma_{k} ; \mu\right)$ in position space for all available on-axis momenta \vec{q} :

- Perform plateau fits for each on-axis \vec{q} and sum over all directions $\rightarrow R(q)$
- Apply FT $R(q) \xrightarrow{F T} R(y)$ to obtain $R(y)$ with $R(y) \approx-R(-y)$ (up to stat. fluctuations) in position space
- In practice, a cutoff $q_{\max }$ is required in this $\mathrm{FT} \rightarrow$ Check for convergence!
- With $n=y / a$ we average over pos. and neg. $y: \bar{R}(y)= \begin{cases}+R(n), & n=0, \ldots, N / 2 \\ -R(N-n), & n=N / 2+1, \ldots, N-1, N=L / a\end{cases}$
- Transform $\bar{R}(n)$ back to momentum space in a way that allows for continuous momenta:

$$
\begin{align*}
& R(k)=[\exp (i k n) \bar{R}(n)]_{n=0}+[\exp (i k n) \bar{R}(n)]_{n=N / 2}+\sum_{n=1}^{N / 2-1} \exp (i k n) \bar{R}(n)+\sum_{n=N-1}^{N / 2+1} \exp (i k(N-n)) \bar{R}(n) \\
& =[\ldots]_{n=0}+[\ldots]_{n=N / 2}+2 i \sum_{n=1}^{N / 2-1} \bar{R}(n) \sin \left(\frac{k}{2} \cdot(2 n)\right) \tag{7}\\
& \text { - Defining } \hat{k} \equiv 2 \sin \left(\frac{k}{2}\right) \text { and } P_{n}\left(\hat{k}^{2}\right)=P_{n}\left(\left(2 \sin \left(\frac{k}{2}\right)\right)^{2}\right) \equiv \frac{\sin (n k)}{\sin \left(\frac{k}{2}\right)} \text { we have } \\
& \qquad R(\hat{k})-R(0)=i \sum_{n=1}^{N / 2-1} \hat{k} P_{n}\left(\hat{k}^{2}\right) \bar{R}(n) \tag{8}
\end{align*}
$$

- Finally taking the derivative w.r.t. \hat{k} and including kinematic factors in $R(n)$ we obtain:

$$
\begin{equation*}
G_{M}\left(\hat{k}^{2}\right)=i \sum_{n=1}^{N / 2-1} P_{n}\left(\hat{k}^{2}\right) R(n) . \tag{9}
\end{equation*}
$$

$\underline{\text { Preliminary results for } G_{M}}$

- For sufficiently large on-axis momentum cutoff $q_{\max }=4$ the signal for $R(y)$ is zero for $y \geq 8$
- For the magnetic moment we obtain $G_{M}(0)=4.02(37)_{\text {stat }}$, using $y_{\max }=15 a$ and $q_{\max }=4 \cdot(2 \pi / L)$
- The available data is described well by $G_{M}\left(\hat{k}^{2}\right)$ within its error (gray band)

Another application: $g_{\pi N N}$

Considering the pseudoscalar isovector current $P_{\text {phys }}^{3}=\bar{\psi} \tau^{3} \gamma_{5} \psi$ we have

$$
\begin{equation*}
\sum_{k} \Pi_{P_{\text {phys }}^{3}}\left(t ; \vec{q} ; \Gamma_{k} ; \mu=k\right)=\frac{q_{1}+q_{2}+q_{3}}{\sqrt{2 E_{N}\left(E_{N}-m_{N}\right)}} \cdot \frac{f_{\pi} M_{\pi}^{2}}{2 m_{q}\left(M_{\pi}^{2}+Q^{2}\right)} G_{\pi N N}\left(Q^{2}\right) \tag{10}
\end{equation*}
$$

- In twisted mass basis: scalar isosinglet current $S_{\mathrm{tm}}^{0} \rightarrow$ disconnected diagrams (currently neglected)

- (Bare) data reasonably described by $G_{\pi N N}\left(\hat{k}^{2}\right)$, using $y_{\max }=15 a$ and $q_{\max }=4 \cdot(2 \pi / L)$
- Significant excited states contaminations at small momenta \rightarrow impact on slope of extrapolation
- Possibly scaling artifacts; e.g. $M_{\mathrm{PS}}, f_{\mathrm{PS}}$ vs $M_{\pi^{0}}, f_{\pi^{0}}$, disc loops missing

Conclusions

- Position space methods provide a promising approach to extract form factors directly at $q^{2}=0$ without any model dependence
- The preliminary result $G_{M}(0)=4.02(37)_{\text {stat }}$ agrees within errors with the one obtained from a fit using the standard sequential method with 1200 confs $G_{M}(0)=3.93(12)_{\text {stat }}$
- The spatial extend ($L=32$) of our test lattice does not allow for an application of a continuum-like derivative
- Future plans
- Include off-axis momenta; increase statistics for G_{M}; different lattice volume and lattice spacings
-Further explore $g_{\pi N N}$; e.g. include disconnected diagrams, renormalization, possibly larger source-sink separations ...
- Apply "y-summation" method to electric dipole form factor of the neutron

