



# Improved statistics of proton decay matrix element



Yasumichi Aoki (Nagoya), Taku Izubuchi (BNL), Eigo Shintani (Mainz) and <u>Amarjit Soni (BNL)</u>

# **1. Introduction**

The proton decay is important observable to detect the baryon number violation in beyond the standard model (SM). For example, SUSY-GUT is a popular BSM that causes coupling unification and proton decay, and recent Super-Kamiokande measurement takes the new limit of SUSY-GUT prediction.



## 4. All-mode-averaging (AMA)

The improved estimator is defined as  $\mathcal{O}^{(\text{imp})} = \mathcal{O}^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} \mathcal{O}^{(\text{appx}),g}, \ \mathcal{O}^{(\text{rest})} = \mathcal{O} - \mathcal{O}^{(\text{appx})}$ 

where  $O^{(appx)}$  is approximation whose cost is much smaller than O. *g* denotes the lattice transformation of the symmetry *G*. Here the translational invariance is employed. Using deflation method, the approximation is defined as the combination of deflation field and truncated solver as  $\mathcal{O}^{(appx)} = \mathcal{O}^{(AMA)}[S^{(all)}], S^{(all)}(x,y) = \sum_{k,l}^{N_{\lambda}} \Lambda_{kl} \psi_k(x) \psi_l(y) + f_{\varepsilon}(D(x,y))$ 

where two parameters,  $N_{\lambda}$  and  $\epsilon$ , control the quality of approximation and computational cost.

## 2. Motivation

To evaluate the proton lifetime in GUT or SUSY-GUT, the matrix element of  $p \rightarrow \pi e$  is necessary. This can be obtained from lattice QCD. Important point is that this contribution results from squared of relevant form factor W<sub>0</sub>.

$$\Gamma_{p \to \pi^0 e^+} = \frac{m_p}{32\pi} \left[ 1 - \left(\frac{m_e}{m_p}\right)^2 \right]^2 \left| \sum_i C_i W_0^i(p \to \pi^0) \right|$$

So far the phenomenogical estimate of matrix element in <u>tree-level baryon ChPT</u> has been used, and this causes considerable systematic uncertainty. Ab-initio calculation would be very valuable.

#### 3. Lattice calculation of p decay matrix element

Low-energy effective Hamiltonian with BSM operator including B-violation describes the



BSM op.

 $C_i(\mu)O_i(\mu)/\Lambda_{\rm GUT}$ 

meson

p

In this calculation, we use CG stopping condition as 0.003 residue, and N<sub>G</sub> = 32 in which source location is same as [2].

## **5.** Test of excited state contamination effect

Figure 1: Comparison of  $W_0$  (p $\pi$ channel) in left-handed operator between  $t_{sep} =$ 22 and 18, in 0.33 GeV pion at three lowest  $r_{sep}$ momentum of pion. Signal is consistent with each other, and short  $t_{sep}$  is much better.  $n_p=(1,0,0)$   $n_p=(1,0,0)$ 



## 6. Extrapolation to physical point and BChPT

We use a fitting ansatz as linear function of quark mass and  $Q^2$  for extrapolation to physical kinematics [1] with Chi-square

4-fermi operator. While the coefficient depends on GUT parameters, the matrix element with B-violating operator is given as a relevant form factor  $W_0$ .

In lattice QCD, the lepton field is able to be excluded from matrix element, and then

$$\langle \pi^0 e^+ | p \rangle_{\text{GUT}} = \sum_{i=\Gamma,\Gamma'} C_i \langle \pi^0 e^+ | (ud)_{\Gamma} (ul)_{\Gamma'} | p \rangle_{\text{SM}} = \sum_{i=\Gamma,\Gamma'} C_i \langle \pi^0 | (ud)_{\Gamma} u_{\Gamma'} | p \rangle_{e^+}$$

Matrix element of  $p \rightarrow \pi$  is decomposed into two form factors

$$\begin{aligned} \langle \pi^{0}(\vec{p}) | (ud)_{\Gamma} u_{\Gamma'} | p(\vec{k}, s) \rangle &= P_{\Gamma'} \Big[ W_{0}^{\Gamma\Gamma'}(q^{2}) + \frac{m_{e^{+}}}{m_{p}} W_{1}^{\Gamma\Gamma'}(q^{2}) \Big] u_{p}(\vec{k}, s) \\ &= P_{\Gamma'} u_{p}(\vec{k}, s) W_{0}^{\Gamma\Gamma'}(0) + \mathcal{O}(m_{l}/m_{N}) \end{aligned}$$

 $W_{0,}$   $W_1$  are called as "relevant" and "irrelevant" form factors, which means the second term is negligibly small because there is a suppression factor of  $O(m_l/m_N)$ .

The above form factors are the extracted from three point function of (meson)-(BSM Op)-(proton). In this simulation the time location of meson and proton is fixed as shown in [1].



 $O_{L/R}$ 

fitting simultaneously for 3 quark masses and 3 different Q<sup>2</sup>.



#### 4. Lattice parameters

In this simulation, we use domain-wall fermion in  $N_f = 2+1$  flavors dynamical fermions. On the same configurations, we use the *all-mode-averaging* (AMA) techniques [2].

| Lattice          | cut-off  | Volume              | Quark mass | Pion mass | t <sub>sep</sub> (fm) | Statistics |
|------------------|----------|---------------------|------------|-----------|-----------------------|------------|
| $24^3 \times 64$ | 1.73 GeV | 2.5 fm <sup>3</sup> | 0.005      | 0.32 GeV  | 2.0, 2.5              | 91, 93     |
|                  |          |                     | 0.01       | 0.42 GeV  | 2.0                   | 55         |
|                  |          |                     | 0.02       | 0.55 GeV  | 2.0                   | 39         |
|                  |          |                     | 0.03       | 0.67 GeV  | 2.0                   | 44         |

 $\Rightarrow$  simulation close to physical point are needed and are in progress

**References:** [1] Y. Aoki, E. Shintani and A. Soni, PRD89, 014505(2014). [2] T. Blum, T. Izubuchi, E. Shintani, PRD88, 094503 (2013), 1402.0244 [hep-lat].