The QCD Phase Transition with Three Physical-Mass Pions

32nd International Symposium on Lattice Field Theory June 23, 2014

Chris Schroeder (for the HotQCD/LLNL/RBC collaboration)

Lawrence Livermore National Laboratory

LLNL-PRES-641426

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The QCD phase transition with physical-mass, chiral quarks (HotQCD Collaboration)

Tanmoy Bhattacharya,¹ Michael I. Buchoff,^{2,3} Norman H. Christ,⁴
H.-T. Ding,⁵ Rajan Gupta,¹ Chulwoo Jung,⁶ F. Karsch,^{6,7} Zhongjie Lin,⁴
R. D. Mawhinney,⁴ Greg McGlynn,⁴ Swagato Mukherjee,⁶ David Murphy,⁴
P. Petreczky,⁶ Chris Schroeder,² R A. Soltz,² P. M. Vranas,² and Hantao Yin⁴
¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
²Physics Division, Lawrence Livermore National Laboratory, Livermore CA 94550, USA
³Institute for Nuclear Theory, Box 351550, Seattle, WA 98195-1550, USA
⁴Physics Department, Columbia University, New York, NY 10027, USA
⁵Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
⁶Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
⁷Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany (Dated: February 18, 2014)

http://arxiv.org/abs/1402.5175

And huge THANKS to Peter Boyle!

Executive Summary

- The 1st study of the QCD phase transition with chirally symmetric lattice fermions and physical pion masses
- The transition is a crossover with T_{χ} = 155 (1) (8) MeV - similar to previous results using staggered fermions
- Anomalous $U(1)_A$ symmetry is thoroughly broken up to $T \sim 185 \text{ MeV} \sim 1.2 T_{\chi}$
- The disconnected chiral susceptibility peak doubles when M_{π} is reduced from 200 to 135 MeV, in rough agreement with O(4) scaling
- Demanding calculations enabled by cutting edge algorithms (DSDR), software (CPS/BFM), and machines (LLNL BG/Q)

Outline

- the QCD finite-temperature transition
- domain wall fermions
- chiral susceptibilities and chiral symmetry
- chiral susceptibilities and U(1)_A
- cutoff effects

The QCD Finite-T Transition

The spontaneous breaking of chiral symmetry

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

is a crucial aspect of the history and present state of our Universe

- studied intensely for over 30 years, experimentally and theoretically
- one outstanding puzzle: role of anomalous $U(1)_A$ axial symmetry

The QCD Finite-T Transition

- $m_q = 0$:
 - U(1)_A thought to be clearly broken at T_χ
 → 4 light d.o.f. (σ, π), O(4)-class 2nd order criticality
 - Pisarski, Wilczek (1984): if U(1)_A breaking at T_χ is mild, have 8 light d.o.f. → NOT O(4)-class – SU(2)_L x SU(2)_R / U(2)_V? → maybe even 1st order

 $\rightarrow U(1)_A$ of fundamental importance and NOT understood

- *m_q* physical:
 - transition appears to be analytic crossover

Recent literature - I

G. Cossu et al. (2013) for JLQCD Disconnected meson diagrams **vanish** at temperatures above T_c

Related: Gap in the Dirac spectrum

Aoki, Fukaya, Taniguchi (2012) Analytic calculation (Overlap) Dirac spectrum $\rho(\lambda) \sim c\lambda^3$ Implies **U(1)_A anomaly invisible**

credit: Guido Cossu, Lattice 2014

Recent literature - II

Bazavov et al. (2012-13) Domain wall, several volumes Dirac spectrum, susceptibilities NOT restored

Ohno et al., Sharma et al. (2012-13) Overlap on HISQ configurations Dirac spectrum NOT restored

Brandt et al. (2013) Wilson improved fermions Screening masses NOT restored Our previous study Exact chiral symmetry (Overlap) topology fixed Only 16³x8 volume Mass dependence No continuum limit

credit: Guido Cossu, Lattice 2014

Domain Wall Fermions

- chiral fermions expensive but essential
- staggered fermions:
 - explicitly break $U(1)_A$ and 5/6 of $SU(2)_L \times SU(2)_R$
 - very costly continuum limit absolutely necessary
- domain wall fermions:
 - three, degenerate pions and exact anomalous current conservation at finite lattice spacing (for infinite L_s)
 - near-continuum results expected for sufficiently large L_s
 - still need to control effects of finite a, V, and L_s

Domain Wall Fermions

- Wilson, w/ chiralities separated in 5th dimension
- LH and RH fields localized on domain walls, x_s=0 and L_s, overlap in bulk for finite L_s
- Want " $L_s \sim \infty$ " **expensive** but manageable

Then there are two chiral zeromode solutions Ψ_0^{\pm} given by

$$\Psi_0^{\pm}(\vec{p},z) = e^{i\vec{p}\cdot\vec{x}}\phi_{\pm}(s,\vec{p})u_{\pm}$$

where the transverse wavefunctions are given by

$$\phi_+(s,\vec{p}) = e^{-\mu_0|s|}$$

$$\phi_-(s,\vec{p}) = (-1)^{n_s} \phi_+(s,\vec{p}) .$$

Lawrence Livermore National Laboratory

Domain Wall Fermions

- Substantial cost reductions:
 - Dislocation Suppressing Determinant Ratios (DSDR)
 - introduce ratio of Wilson fermions
 with negative unphysical mass
 - suppress "dislocations" low modes due to O(a) effects – without freezing topology
 - achieve target m_{res} at reduced L_s
 - Möbius Formulation
 - generalize Shamir formulation with overall scaling factor
 - improve sign function approximation in low-mode, residual-χSB region
 - achieve target m_{res} at further reduced L_s

~10X for m_{π} ~135 MeV

additional 2X for m_{π} ~135 MeV

$\chi_{I,disc}$ and T_{χ}

Optimal probe of χSB: disconnected chiral susceptibility

$$\chi_{l,\text{disc}} = \left(\frac{\partial}{\partial m_l} \langle \bar{\psi}\psi \rangle_l\right)_{\text{disc}} = \frac{1}{N_\sigma^3 N_\tau} \left\{ \left\langle (\text{Tr}M_l^{-1})^2 \right\rangle - \left\langle \text{Tr}M_l^{-1} \right\rangle^2 \right\}$$

- clearly peaked at T_{χ}
- UV divergence logarithmic and suppressed by m_l^3

1. $T_{\gamma} = 155$ (1) (8) MeV – good agreement w/ staggered

Lawrence Livermore National Laboratory

 64³x8 results agree well w/in errors – f.v. effects are minor (f.v. effects should *decrease* as *T* increases, higher stats needed but *hard*)

3. peak height for M_{π} = 135 MeV about 2x that for M_{π} = 200 MeV – agrees with O(4) scaling, but not conclusive

4. N_t =12, M_{π} =161 MeV HISQ looks like N_t =8, M_{π} >200 MeV DWF, but need continuum limits for serious comparison

More Chiral Susceptibilities

- pseudo-/scalar, non-/singlet susceptibilities
 - more sensitive than condensate
- probe chiral and U(1)_A symmetries
- precision boost from random Z₂ wall source
- renormalized to $\overline{\text{MS}}$ simply using $Z_{m \rightarrow \overline{\text{MS}}}$

Susceptibilities and T_{χ}

- $\chi_{\pi} \chi_{\sigma}, \chi_{\eta} \chi_{\delta}$
 - → zero when chiral symmetry is restored
 - \rightarrow $\chi_{\eta} \chi_{\delta}$ always near-zero
 - $\Rightarrow \quad \chi_{\pi} \chi_{\sigma} \text{ near-zero for} \\ T > 160 \text{ MeV}$
 - \rightarrow very little M_{π} dependence
 - → no significant volume dependence (not shown)

200	· ·	1 1	1	· · ·	,	· ·	1	,	, ,	
	-	Φ	m_{π}	≈ 200	MeV,	$(\chi_{\pi}^{\overline{\mathrm{MS}}})$	$-\chi_{\sigma}^{\overline{\mathrm{MS}}})/$	T^{2}		_
150			m_{π}	≈ 200	MeV,	$(\chi_\eta^{\overline{\mathrm{MS}}}$	$-\chi_{\delta}^{\overline{\mathrm{MS}}})/$	T^2	k	
190			m_{π}	≈ 135	MeV,	$(\chi_{\pi}^{\overline{\mathrm{MS}}})$	$-\chi_{\sigma}^{\overline{\mathrm{MS}}})/$	T^{2}		
	-		Φm_{π}	≈ 135	MeV,	$(\chi_{\eta}^{\overline{\mathrm{MS}}})$	$-\chi_{\delta}^{\overline{\mathrm{MS}}})/$	T^2		-
100	-	I	Ŧ							-
	-		п д							-
50	-		— 1	Ŧ						-
	-									-
0			. .		ğğ			· <mark>@</mark> · · · ·		
		ш. — I — I	L			1 .	1		<u> </u>	
1	30	140	150	160)	170	180	1	90	200
$T ({ m MeV})$										

Susceptibilities and U(1)_A

- $\chi_{\pi} \chi_{\delta}$
 - → near-zero when $U(1)_A$ is near-restored
 - → near-zero for T > 185 MeV, well above T_{χ}
 - \rightarrow little M_{π} dependence
 - → no significant volume dependence (not shown)

Axial symmetry breaking from Dirac spectra: DWF

$$\chi_{\pi} - \chi_{\delta} = \int_{0}^{\infty} d\lambda \frac{4m^{2}\rho(\lambda)}{(m^{2} + \lambda^{2})^{2}}$$
$$\rho(\lambda \rightarrow 0) = a_{0} + a_{1}\lambda + a_{2}m^{2}\delta(\lambda)$$
$$\chi_{\pi} - \chi_{\delta} = a_{0}\pi/m + 2a_{1} + 2a_{2}$$

SU(2)_LxSU(2)_B breaking contr. → 1.4 near zero modes contr. 1.2 other contr. 1 0.8 0.6 0.4 0.2 0 170 150 180 190 160 200 T [MeV]

almost the entire contribution to the axial symmetry breaking measure $\chi_{\pi} - \chi_{\delta}$ comes from near-zero modes $m^2 \delta(\lambda)$ for T $\geq 1.2T_c$

credit: Swagato Mukherjee, XQCD 2014

Cutoff Effects

- Published results are all for N_t=8
- Calculation with N_t =12, N_s =64, and one temperature $T \sim T_{\chi}$ underway -- preliminary results are not yet available
- Zero-T spectrum results suggest cutoff effects of ~5%
 <u>but</u> quantifying cutoff effects at finite *T* is necessary!

TABLE II. Results at $\beta = 1.633$ and T = 0 (in lattice units and MeV) from 50 configurations separated by 10 time units. We use M_{Ω} to determine the scale. Also listed are the experimental values.

	1/a	MeV	Expt.(MeV)
m_{π}	0.11824(49)	129.53	135
m_K	0.42301(51)	463.39	495
m_{Ω}	1.5267(55)	1672.45	1672.45
$T = \frac{1}{8a}$	0.125	136.93	
f_{π}	0.12640(25)	138.47	130.4
f_K	0.14852(48)	162.70	156.1
$m_{\rm res}$	0.002167(16)		

Ratios of dimensionless combinations of physical quantities computed using 1/a = 1.73 and 2.28 GeV.

Lawrence Livermore National Laboratory

Executive Summary

- The 1st study of the QCD phase transition with chirally symmetric lattice fermions and physical pion masses
- The transition is a crossover with T_{χ} = 155 (1) (8) MeV - similar to previous results using staggered fermions
- Anomalous $U(1)_A$ symmetry is thoroughly broken up to $T \sim 185 \text{ MeV} \sim 1.2 T_{\chi}$
- The disconnected chiral susceptibility peak doubles when M_{π} is reduced from 200 to 135 MeV, in rough agreement with O(4) scaling
- Demanding calculations enabled by cutting edge algorithms (DSDR), software (CPS/BFM), and machines (LLNL BG/Q)

Thank you for your attention!

Thanks to the organizers for 15 minutes of fame.

Thanks to all my collaborators for their hard work.

Thanks to LLNL and BNL for HPC resources and support.

Thanks to the DOE and NSF for funding this work.

