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Computation of renormalization coefficients
for quark bilinears

Non-perturbative computations has been the preferred choice for
quite a long time, but:

I strictly speaking multiplicative renormalizability is proved only in
Perturbation Theory; and

I fermion bilinears are either finite or only logarithmically
divergent. Since there are no power divergences PT must work.

Drawbacks of PT
I perturbative series are badly convergent.

I go to high order

I diagrammatic Lattice PT is cumbersome;

I use an automated technique



A sketch of NSPT
I Let the system evolve according Langevin dynamic in a

“fictitious” time t

∂tU(x, t) = {−i∇S[U(x, t)]− iη(x, t)}U(x, t)

where 〈η(x, t)〉 = 0 〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t− t′).
I By expanding the link in a power series one gets a system of

equations to be truncated at a given order (Stochastic PT).

I The differential equations can be traded for integral ones (in this
way one would get diagrams); in out approach the integration is
performed numerically on a computer.

I Inverting the fermionic (Dirac) operator turns into inverting a
series:

M [U(x, t)]−1 = M−1(0)

+ β−
1
2M−1(1)

+ . . .

M−1(0)

= M (0)−1

, M−1(n)

= −M (0)−1
n−1∑
j=0

M (n−1)M (j)−1



RI-MOM′ scheme
Starting from Green functions (in Landau gauge)

GΓ(p) =

∫
dx 〈p| ψ(x)Γψ(x) |p〉

vertex functions are obtained by amputation

ΓΓ(p) = S−1(p)GΓ(p)S−1(p).

The quark field renormalization constant has to be computed from
the condition

Zq(µ, α) = −i 1

12

Tr(/pS−1(p))

p2
|p2=µ2 .

After projecting on tree-level structure

OΓ(p) = Tr
(
P̂OΓΓΓ(p)

)
,

one enforces renormalization conditions that read

ZOΓ
(µ, α)Z−1

q (µ, α)OΓ(p)|p2=µ2 = 1.



Zero quark mass and logarithmic divergencies

In order to have a mass-independent scheme, all this is defined at zero
quark mass: this requires knowledge of the critical mass (known up to
2-loop, 3-loop as a byproduct).
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Critical mass is computed from the propagator:

Ŝ(p̂, m̂cr, β
−1)−1 = i/̂p+ m̂W (p̂)− Σ̂(p̂, m̂cr, β

−1)

Σ̂(0, m̂cr, β
−1) = m̂cr

m̂(3),tls
cr = −3.94(4) m̂(3),iwa

cr = −0.78(2)

Advantage of RI-MOM′ scheme: logarithmic contributions to quark
bilinears can be inferred from continuum computations (l = log(µa)2)

γOΓ
=

1

2

d

dl
logZOΓ

⇒ ZOΓ
= 1 + α

(
c1 − γ(1)

OΓ
l
)

+O(α2)



Lattice artifacts
A prototypal fitting form of ours reads:

ÔΓ(p̂, pL, ν) = c1 + c2
∑
σ

p̂2
σ + c3

∑
σ p̂

4
σ∑

ρ p̂
2
ρ

+ c4p̂
2
ν + ∆ÔΓ(pL) +O(a4)

I the a→ 0 limit can be obtained by means of the hypercubic
expansion;

I by computing ÔΓ(p̂, pL, ν) on different volumes we can account
for finite size corrections;

I performing a combined fit we account for the limits a→ 0 and
L→∞ simultaneously.
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Results
I nf=2 tree-level Symanzik [ M. B., F. Di Renzo]

analytical

one-loop one-loop two-loop three-loop

ZS -0.6893 -0.683(7) -0.777(24) -1.96(14)
ZP -1.1010 -1.098(11) -1.299(38) -3.19(21)
ZV -0.8411 -0.838(6) -0.891(17) -1.870(65)
ZA -0.6352 -0.633(4) -0.611(16) -1.198(57)

I nf=4 Iwasaki [M. B., F. Di Renzo, M. Hasegawa]

analytical

one-loop one-loop two-loop three-loop

ZS -0.4488 -0.442(6) -0.170(11) -0.33(11)
ZP -0.7433 -0.739(7) -0.202(13) -0.58(11)
ZV -0.5623 -0.561(7) -0.067(12) -0.367(61)
ZA -0.4150 -0.419(6) -0.033(12) -0.236(56)

(results are available also for nf=0)



Summing the series
We can sum the series and compare with non perturbative results
(Symanzik β = 4.05) [M. Constantinou et al. JHEP08(2010)068]

ZV ZA ZS ZP

NSPT 0.710(2)(28) 0.788(2)(18) 0.753(4)(30) 0.601(5)(48)
ETMC(M1) 0.659(4) 0.772(6) 0.645(6) 0.440(6)
ETMC(M2) 0.662(3) 0.758(4) 0.678(4) 0.480(4)

(Iwasaki β = 2.10) [arXiv:1403.4504 [hep-lat]]

ZV ZA ZS ZP

NSPT 0.677(9)(39) 0.769(9)(25) 0.712(14)(36) 0.538(15)(63)
ETMC(M1) 0.655(03) 0.762(04) 0.700(06) 0.516(02)
ETMC(M2) 0.657(02) 0.752(02) 0.749(03) 0.545(02)

I thee-loop contribution is relatively important: quite large
truncation errors

I fair agreement between PT and non PT for Iwasaki action and
finite Symanzik

I deviation between PT and non PT in Symanzik divergent



We can assess irrelevant effects by discarding the continuum limit and
finite size contributions:

Õ
(i)
Γ (p̂, ν) = c

(i)
2

∑
σ

p̂2
σ + c

(i)
3

∑
σ p̂

4
σ∑

ρ p̂
2
ρ

+ c
(i)
4 p̂2

ν +O(a4)

The resummed quantity

3∑
i=1

β−i
1

4

4∑
ν=1

Õ
(i)
Γ (p̂, ν) can be regarded as

the irrelevant contributions to ZΓ
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Finite size effects can be reconstructed to a fair accuracy provided one
fits terms compliant to the lattice symmetries.



Boosting the resummations
Re-express the series as expansions in different couplings:

can we find better convergence proprieties?

x0 = β−1

√
P

x1 = − 1
P (0) log(P ) x2 = β−1

P (M1) (M2)

ZV 0.686(21) 0.688(17) 0.661(55) 0.659(4) 0.662(3)
ZA 0.773(12) 0.775(9) 0.763(26) 0.772(6) 0.758(4)
ZS 0.727(29) 0.726(27) 0.705(49) 0.645(6) 0.678(4)
ZP 0.558(45) 0.558(41) 0.526(73) 0.440(6) 0.480(4)

where P is the 1× 1 plaquette.
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I BPT apparently solves the problem of the discrepancies for ZV
and ZA;

I discrepancies are still there for ZS and ZP :
I should even higher order terms be included?
I could non-perturbative computations suffer from finite volume

effects (any interplay between IR and UV effects)?

Some general remark
I we put forward a method to assess finite size effects: there is in

principle no reason why one should not attempt the same in the
non-perturbative case;

I high-loop computations can provide a new handle to correct
non-perturbative computations with respect to irrelevant
contributions.



Conclusions

We computed 2 and 3-loop Renormalization Constants for quark
bilinears in different regularizations.

I NSPT provides an approach independent w.r.t. non perturbative
computations (different systematic effects);

I in principle there is no constraint on computing finite constants;

I in divergent constants we are limited to 3-loop order because of
continuum computations;

I NSPT provides a new method to correct non-perturbative
computations with respect to irrelevant contributions.

Thank you for your attention





Taming the logs

Z’s expansion is in the form

Z(µ, α0) = 1 +
∑
n>0

dn(l)αn0 dn(l) =

n∑
i=0

d
(i)

n li.

By differentiating w.r.t log(µa)2 one obtains the anomalous dimension

γ =
1

2

d

dl
logZ(µ, α) =

∑
n>0

γn α(µ)n

that depends only on the scheme.

Procedure
I match the two expansion above (all log’s must cancel out);

I re-express the expansion in the bare coupling α0;

I subtract divergences from Z’s before performing fits.



Finite lattice spacing effects

Consider the case of quark field renormalization constant Zq.
Hypercubic symmetry fixes the (expected) form of self energy:

1

4

∑
µ

γµTrspin(γµΣ̂) = i
∑
µ

γµp̂µ

(
Σ̂(0)
γ (p̂) + p̂2

µΣ̂(1)
γ (p̂) + p̂4

µΣ̂(2)
γ (p̂) + . . .

)
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Σ̂(i)
γ (p̂) can be expanded in hypercubic invariants

Σ̂(i)
γ (p̂) = c

(i)
1 + c

(i)
2
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ν

p̂2
ν + c

(i)
3

∑
ν p̂

4
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2
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The only term surviving the a→ 0 limit is c
(0)
1 .



Finite volume effects
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If there were no finite size effects, point

with the same pµ =
2π

L
nµ should join in a

perfectly smooth way.

On a dimensional ground we expect a pL dependance. We can rewrite

Σ̂γ(p̂, pL, µ̄) = Σ̂γ(p̂,∞, µ̄) +
(

Σ̂γ(p̂, pL, µ̄)− Σ̂γ(p̂,∞, µ̄)
)

≡ Σ̂γ(p̂,∞, µ̄) + ∆Σ̂γ(p̂, pL, µ̄)

to a first approximation we neglect corrections on top of corrections:

∆Σ̂γ(p̂, pL, µ̄) ∼ ∆Σ̂γ(pL).

Since pµL =
2πnµ
L

L = 2πnµ: at fixed n-tuple different lattice sizes

are affected by the pL effects


