An update on the status of NSPT computations

M. Brambilla F. Di Renzo
Università degli Studi di Parma and INFN

27 June 2014
Lattice 2014
The XXXII International Symposium on Lattice Field Theory

Outline of the talk

- Motivation
- Numerical Stochastic Perturbation Theory
- RI-MOM ${ }^{\prime}$ scheme
- Perturbative results
- Resummation of PT series
- Conclusions

Talk based on
M. B., F. Di Renzo, Eur. Phys. J. C 73 (2013) 2666
M. B., F. Di Renzo, M. Hasegawa, arXiv:1402.6581 [hep-lat] (accepted on EPJC)

COMPUTATION OF RENORMALIZATION COEFFICIENTS

FOR QUARK BILINEARS

Non-perturbative computations has been the preferred choice for quite a long time, but:

- strictly speaking multiplicative renormalizability is proved only in Perturbation Theory; and
- fermion bilinears are either finite or only logarithmically divergent. Since there are no power divergences PT must work.

Drawbacks of PT

- perturbative series are badly convergent.
- go to high order
- diagrammatic Lattice PT is cumbersome;
- use an automated technique

A sketch of NSPT

- Let the system evolve according Langevin dynamic in a "fictitious" time t

$$
\partial_{t} U(x, t)=\{-i \nabla S[U(x, t)]-i \eta(x, t)\} U(x, t)
$$

where $\langle\eta(x, t)\rangle=0 \quad\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle=2 \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)$.

- By expanding the link in a power series one gets a system of equations to be truncated at a given order (Stochastic PT).
- The differential equations can be traded for integral ones (in this way one would get diagrams); in out approach the integration is performed numerically on a computer.
- Inverting the fermionic (Dirac) operator turns into inverting a series:

$$
\begin{aligned}
M[U(x, t)]^{-1} & =M^{-1^{(0)}}+\beta^{-\frac{1}{2}} M^{-1^{(1)}}+\ldots \\
M^{-1^{(0)}}=M^{(0)^{-1}}, \quad M^{-1^{(n)}} & =-M^{(0)^{-1}} \sum_{j=0}^{n-1} M^{(n-1)} M^{(j)^{-1}}
\end{aligned}
$$

RI-MOM ${ }^{\prime}$ SCHEME

Starting from Green functions (in Landau gauge)

$$
G_{\Gamma}(p)=\int d x\langle p| \bar{\psi}(x) \Gamma \psi(x)|p\rangle
$$

vertex functions are obtained by amputation

$$
\Gamma_{\Gamma}(p)=S^{-1}(p) G_{\Gamma}(p) S^{-1}(p) .
$$

The quark field renormalization constant has to be computed from the condition

$$
Z_{q}(\mu, \alpha)=-\left.i \frac{1}{12} \frac{\operatorname{Tr}\left(\not p S^{-1}(p)\right)}{p^{2}}\right|_{p^{2}=\mu^{2}} .
$$

After projecting on tree-level structure

$$
O_{\Gamma}(p)=\operatorname{Tr}\left(\hat{P}_{O_{\Gamma}} \Gamma_{\Gamma}(p)\right),
$$

one enforces renormalization conditions that read

$$
\left.Z_{O_{\Gamma}}(\mu, \alpha) Z_{q}^{-1}(\mu, \alpha) O_{\Gamma}(p)\right|_{p^{2}=\mu^{2}}=1 .
$$

Zero quark mass and logarithmic divergencies

In order to have a mass-independent scheme, all this is defined at zero quark mass: this requires knowledge of the critical mass (known up to 2 -loop, 3-loop as a byproduct).

Critical mass is computed from the propagator:

$$
\begin{aligned}
& \hat{S}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)^{-1}=i \hat{p p}+\hat{m}_{W}(\hat{p})-\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right) \\
& \hat{\Sigma}\left(0, \hat{m}_{c r}, \beta^{-1}\right)=\hat{m}_{c r} \\
& \quad \hat{m}_{c r}^{(3), t l s}=-3.94(4) \quad \hat{m}_{c r}^{(3), i w a}=-0.78(2)
\end{aligned}
$$

Advantage of RI-MOM ${ }^{\prime}$ scheme: logarithmic contributions to quark bilinears can be inferred from continuum computations $\left(l=\log (\mu a)^{2}\right)$

$$
\gamma_{O_{\Gamma}}=\frac{1}{2} \frac{d}{d l} \log Z_{O_{\Gamma}} \quad \Rightarrow \quad Z_{O_{\Gamma}}=1+\alpha\left(c_{1}-\gamma_{O_{\Gamma}}^{(1)} l\right)+\mathcal{O}\left(\alpha^{2}\right)
$$

Lattice artifacts

A prototypal fitting form of ours reads:

$$
\widehat{O}_{\Gamma}(\hat{p}, p L, \nu)=c_{1}+c_{2} \sum_{\sigma} \hat{p}_{\sigma}^{2}+c_{3} \frac{\sum_{\sigma} \hat{p}_{\sigma}^{4}}{\sum_{\rho} \hat{p}_{\rho}^{2}}+c_{4} \hat{p}_{\nu}^{2}+\Delta \widehat{O}_{\Gamma}(p L)+\mathcal{O}\left(a^{4}\right)
$$

- the $a \rightarrow 0$ limit can be obtained by means of the hypercubic expansion;
- by computing $\widehat{O}_{\Gamma}(\hat{p}, p L, \nu)$ on different volumes we can account for finite size corrections;
- performing a combined fit we account for the limits $a \rightarrow 0$ and $L \rightarrow \infty$ simultaneously.

Results

- $\mathrm{n}_{f}=2$ tree-level Symanzik [M. B., F. Di Renzo]

	analytical one-loop	one-loop	two-loop	three-loop
Z_{S}	-0.6893	$-0.683(7)$	$-0.777(24)$	$-1.96(14)$
Z_{P}	-1.1010	$-1.098(11)$	$-1.299(38)$	$-3.19(21)$
Z_{V}	-0.8411	$-0.838(6)$	$-0.891(17)$	$-1.870(65)$
Z_{A}	-0.6352	$-0.633(4)$	$-0.611(16)$	$-1.198(57)$

- $\mathrm{n}_{f}=4$ Iwasaki [M. B., F. Di Renzo, M. Hasegawa]

	analytical one-loop	one-loop	two-loop	three-loop
Z_{S}	-0.4488	$-0.442(6)$	$-0.170(11)$	$-0.33(11)$
Z_{P}	-0.7433	$-0.739(7)$	$-0.202(13)$	$-0.58(11)$
Z_{V}	-0.5623	$-0.561(7)$	$-0.067(12)$	$-0.367(61)$
Z_{A}	-0.4150	$-0.419(6)$	$-0.033(12)$	$-0.236(56)$

(results are available also for $\mathrm{n}_{f}=0$)

Summing THE SERIES

We can sum the series and compare with non perturbative results (Symanzik $\beta=4.05$) [M. Constantinou et al. JHEP08(2010)068]

	Z_{V}	Z_{A}	Z_{S}	Z_{P}
NSPT	$0.710(2)(28)$	$0.788(2)(18)$	$0.753(4)(30)$	$0.601(5)(48)$
ETMC(M1)	$0.659(4)$	$0.772(6)$	$0.645(6)$	$0.440(6)$
ETMC(M2)	$0.662(3)$	$0.758(4)$	$0.678(4)$	$0.480(4)$

(Iwasaki $\beta=2.10$) [arXiv:1403.4504 [hep-lat]]

	Z_{V}	Z_{A}	Z_{S}	Z_{P}
NSPT	$0.677(9)(39)$	$0.769(9)(25)$	$0.712(14)(36)$	$0.538(15)(63)$
ETMC(M1)	$0.655(03)$	$0.762(04)$	$0.700(06)$	$0.516(02)$
ETMC(M2)	$0.657(02)$	$0.752(02)$	$0.749(03)$	$0.545(02)$

- thee-loop contribution is relatively important: quite large truncation errors
- fair agreement between PT and non PT for Iwasaki action and finite Symanzik
- deviation between PT and non PT in Symanzik divergent

We can assess irrelevant effects by discarding the continuum limit and finite size contributions:

$$
\tilde{O}_{\Gamma}^{(i)}(\hat{p}, \nu)=c_{2}^{(i)} \sum_{\sigma} \hat{p}_{\sigma}^{2}+c_{3}^{(i)} \frac{\sum_{\sigma} \hat{p}_{\sigma}^{4}}{\sum_{\rho} \hat{p}_{\rho}^{2}}+c_{4}^{(i)} \hat{p}_{\nu}^{2}+\mathcal{O}\left(a^{4}\right)
$$

The resummed quantity $\sum_{i=1}^{3} \beta^{-i} \frac{1}{4} \sum_{\nu=1}^{4} \tilde{O}_{\Gamma}^{(i)}(\hat{p}, \nu)$ can be regarded as the irrelevant contributions to Z_{Γ}

Finite size effects can be reconstructed to a fair accuracy provided one fits terms compliant to the lattice symmetries.

Boosting the Resummations

Re-express the series as expansions in different couplings:
can we find better convergence proprieties?

	$x_{0}=\frac{\beta^{-1}}{\sqrt{P}}$	$x_{1}=-\frac{1}{P^{(0)}} \log (P)$	$x_{2}=\frac{\beta^{-1}}{P}$	$(\mathrm{M} 1)$	$(\mathrm{M} 2)$
Z_{V}	$0.686(21)$	$0.688(17)$	$0.661(55)$	$0.659(4)$	$0.662(3)$
Z_{A}	$0.773(12)$	$0.775(9)$	$0.763(26)$	$0.772(6)$	$0.758(4)$
Z_{S}	$0.727(29)$	$0.726(27)$	$0.705(49)$	$0.645(6)$	$0.678(4)$
Z_{P}	$0.558(45)$	$0.558(41)$	$0.526(73)$	$0.440(6)$	$0.480(4)$

where P is the 1×1 plaquette.

- BPT apparently solves the problem of the discrepancies for Z_{V} and Z_{A};
- discrepancies are still there for Z_{S} and Z_{P} :
- should even higher order terms be included?
- could non-perturbative computations suffer from finite volume effects (any interplay between IR and UV effects)?

Some general Remark

- we put forward a method to assess finite size effects: there is in principle no reason why one should not attempt the same in the non-perturbative case;
- high-loop computations can provide a new handle to correct non-perturbative computations with respect to irrelevant contributions.

Conclusions

We computed 2 and 3-loop Renormalization Constants for quark bilinears in different regularizations.

- NSPT provides an approach independent w.r.t. non perturbative computations (different systematic effects);
- in principle there is no constraint on computing finite constants;
- in divergent constants we are limited to 3-loop order because of continuum computations;
- NSPT provides a new method to correct non-perturbative computations with respect to irrelevant contributions.

Thank you for your attention

TAming the logs

Z's expansion is in the form

$$
Z\left(\mu, \alpha_{0}\right)=1+\sum_{n>0} \bar{d}_{n}(l) \alpha_{0}^{n} \quad \bar{d}_{n}(l)=\sum_{i=0}^{n} \bar{d}_{n}^{(i)} l^{i}
$$

By differentiating w.r.t $\log (\mu a)^{2}$ one obtains the anomalous dimension

$$
\gamma=\frac{1}{2} \frac{d}{d l} \log Z(\mu, \alpha)=\sum_{n>0} \gamma_{n} \alpha(\mu)^{n}
$$

that depends only on the scheme.

Procedure

- match the two expansion above (all log's must cancel out);
- re-express the expansion in the bare coupling α_{0};
- subtract divergences from Z's before performing fits.

Finite lattice spacing effects

Consider the case of quark field renormalization constant Z_{q}. Hypercubic symmetry fixes the (expected) form of self energy:

$$
\frac{1}{4} \sum_{\mu} \gamma_{\mu} \operatorname{Tr}_{\text {spin }}\left(\gamma_{\mu} \hat{\Sigma}\right)=i \sum_{\mu} \gamma_{\mu} \hat{p}_{\mu}\left(\hat{\Sigma}_{\gamma}^{(0)}(\hat{p})+\hat{p}_{\mu}^{2} \hat{\Sigma}_{\gamma}^{(1)}(\hat{p})+\hat{p}_{\mu}^{4} \hat{\Sigma}_{\gamma}^{(2)}(\hat{p})+\ldots\right)
$$

$\hat{\Sigma}_{\gamma}^{(i)}(\hat{p})$ can be expanded in hypercubic invariants

$$
\hat{\Sigma}_{\gamma}^{(i)}(\hat{p})=c_{1}^{(i)}+c_{2}^{(i)} \sum_{\nu} \hat{p}_{\nu}^{2}+c_{3}^{(i)} \frac{\sum_{\nu} \hat{p}_{\nu}^{4}}{\sum_{\nu} \hat{p}_{\nu}^{2}}+\mathcal{O}\left(a^{4}\right)
$$

The only term surviving the $a \rightarrow 0$ limit is $c_{1}^{(0)}$.

Finite volume effects

If there were no finite size effects, point with the same $p_{\mu}=\frac{2 \pi}{L} n_{\mu}$ should join in a perfectly smooth way.

On a dimensional ground we expect a $p L$ dependance. We can rewrite

$$
\begin{aligned}
\widehat{\Sigma}_{\gamma}(\hat{p}, p L, \bar{\mu}) & =\widehat{\Sigma}_{\gamma}(\hat{p}, \infty, \bar{\mu})+\left(\widehat{\Sigma}_{\gamma}(\hat{p}, p L, \bar{\mu})-\widehat{\Sigma}_{\gamma}(\hat{p}, \infty, \bar{\mu})\right) \\
& \equiv \widehat{\Sigma}_{\gamma}(\hat{p}, \infty, \bar{\mu})+\Delta \widehat{\Sigma}_{\gamma}(\hat{p}, p L, \bar{\mu})
\end{aligned}
$$

to a first approximation we neglect corrections on top of corrections:

$$
\Delta \widehat{\Sigma}_{\gamma}(\hat{p}, p L, \bar{\mu}) \sim \Delta \widehat{\Sigma}_{\gamma}(p L)
$$

Since $p_{\mu} L=\frac{2 \pi n_{\mu}}{L} L=2 \pi n_{\mu}$: at fixed n-tuple different lattice sizes are affected by the $p L$ effects

