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Agenda

- What is all this thimble story about (a quick primer)

- A few algorithmic solutions that are already available

- An interesting success for a toy model: ideal sampling on the thimble

- Can we step forward from that?

- Conclusions, perspectives, speculations

Thimble regularization of field theories (M. Cristoforetti, F. Di Renzo, L. Scorzato - 
Phys.Rev.D86 2012) is still a fairly new attempt at the solution of the infamous sign problem.

While it is conceptually simple and elegant, it can be highly non trivial when it comes to 
algorithmic issues. Staying on the thimble is the relevant issue. I will present a few (almost 
trivial) results on a very basic model that are our starting point in the quest of a new 
algorithm, having in mind that we can maybe learn something useful for a broader field of 
applications. We are still quite far from success...



What is all this thimble story about (a quick primer)



The generalization of Steepest Descent paths are known as LEFSCHETZ THIMBLES

in terms of which
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dimension n immersed in �n, and, for each cycle C, where the integral converges:

The generalization of the 
paths of SD are called 
Lefschetz thimbles Jσ, 
For each stationary point pσ 
of the complexified f(z), 
Jσ is the union of the paths 
of SD that fall in pσ at ∞.

Z

C
dx g(x)ef(x) =

X

�

n

�

Z

J�

dz g(z)ef(z)
i.e. the thimbles provide a basis 
of the relevant homology group, 
with integer coefficients.

C =
X

�

n�J� (in the homological sense)

Z

Rn

dx

n

g(x)ef(x)

x
pσ

R t

I tJ�

pσ

J�

x

Higher dimensions

Under suitable conditions on f(x) and g(x), Morse theory (Pham ‘83, Vassiliev ‘02, 
Nicolaescu ‘11, Witten ‘10) tells us that the timbles Jσ are smooth manifolds of real 
dimension n immersed in �n, and, for each cycle C, where the integral converges:

The generalization of the 
paths of SD are called 
Lefschetz thimbles Jσ, 
For each stationary point pσ 
of the complexified f(z), 
Jσ is the union of the paths 
of SD that fall in pσ at ∞.

Z

C
dx g(x)ef(x) =

X

�

n

�

Z

J�

dz g(z)ef(z)
i.e. the thimbles provide a basis 
of the relevant homology group, 
with integer coefficients.

C =
X

�

n�J� (in the homological sense)

Z

Rn

dx

n

g(x)ef(x)

x
pσ

R t

I tJ�

pσ

J�

x

Higher dimensions

Under suitable conditions on f(x) and g(x), Morse theory (Pham ‘83, Vassiliev ‘02, 
Nicolaescu ‘11, Witten ‘10) tells us that the timbles Jσ are smooth manifolds of real 
dimension n immersed in �n, and, for each cycle C, where the integral converges:

The generalization of the 
paths of SD are called 
Lefschetz thimbles Jσ, 
For each stationary point pσ 
of the complexified f(z), 
Jσ is the union of the paths 
of SD that fall in pσ at ∞.

Z

C
dx g(x)ef(x) =

X

�

n

�

Z

J�

dz g(z)ef(z)
i.e. the thimbles provide a basis 
of the relevant homology group, 
with integer coefficients.

C =
X

�

n�J� (in the homological sense)

Z

Rn

dx

n

g(x)ef(x)

x
pσ

R t

I tJ�

pσ

J�

x

Valid under suitable conditions on     and      and where  

- The greek index    is attached to stationary points    of the complex(ified) 

-    is the union of all the SD paths that fall into    at infinite time

-               are the intersection numbers ...

- ... of the original domain with the dual thimbles     union of Steepest Ascent
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2. Thermodynamic argument and Morse Theory

We have said that a generic domain can be 
decomposed on the thimbles basis: C =

X

�

n�J�

(see Witten arXiv:1001.2933)

where nσ =〈 C, Kσ〉are the intersection numbers 
between the original integration domain C and the 
dual thimbles Kσ, defined as the union of the curves 
of steepest ascent.

Jσ
Kσ
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A Summa of fundamental results from Morse Theory

Everything comes with the right (real) dimension!

We are all familiar with Steepest Descent paths that are the starting point for the 
saddle point evaluation of integrals. These ideas have a generalization ...



Thimbles in practice ...

1.1 The 0-dimensional �4

theory

We will be concerned with to the study of the action
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2
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2 C. This is obviously a toy model, and one regards
as correlators plain one-dimensional integrals such as
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The choice of a complex � is a prototypal case of the sign problem: with a complex
action, we miss a positive semi-definite measure and hence a probability distribution to start
with; in particular, a direct access to Monte Carlo methods is ruled out.

1.2 Complex Langevin for the 0-d �4

theory

It was realized long time ago that a solution to the sign problem could be searched in the
context of Stochastic Quantization: the Langevin equation admits a formal solution also for
complex actions, in particular via the Fokker-Planck formulation [2, 3]. To turn the formal
arguments into a rigorous proof eventually turned out to be hard and numerical instabilities
(suggesting problems) were in particular discussed in the context of the theory at hand [1].

We can complexify the field by setting � = x + i y. As a result, real and imaginary part
of the action read
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where ⌧ is the stochastic time in which the solution evolves and we have adhered to the
recipe of adding the gaussian noise ⌘(⌧) to the equation for the real part of the field only
(see later).
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There are 3 critical points: �0 = 0 and �± = ±
p

��

�

(which are the two, complex valued,
“Higgs vacua”). As for the m

�

, the situation is quite di↵erent between the 3 cases �
R

> 0,
�

R

< 0 and �
R

= 0: in each case we computed the stable and unstable thimble associated
with each critical point with the procedure described above. Figures 1, 2 and 3 show the
results for the three cases.

From Figure 1, we see that the unstable thimbles related to the Higgs vacua do not
intersect the real axis and therefore these points do not contribute to the integrals, that is
m± = 0, so we must have m0 = 1 and in fact with this assumption and by integrating along
the stable thimble attached to �0, we recover the correct results for, say, Z =

R

e�S (the
integration can be easily carried on along the real axis both analitically and numerically,
as the real part of the action grows very large with x and so oscillations are damped out).
The case �

R

< 0 depicted in Figure 2 is a totally di↵erent matter, as we cross the Stokes
ray �

R

= 0 while changing sign to �
R

. Now we see that the unstable thimbles connected to
the Higgs vacua do intersect the real axis and therefore m± 6= 0, as well as m0 6= 0. The
correct combination which recovers the expected results for the integrals turns out to be
m0 = �1 and m± = +1. Which is the origin of this discontinuity? If we hadn’t known the
correct result from the beginning, how would have we calculated the m

�

? The answer lies
in considering the case �

R

= 0, which exhibits the Stokes phenomenon, showed in Figure 3.
The stable thimble connected to 0 exhibits the Stokes phenomenon, in fact it “collapes” into
the Higgs vacua, from which it does not “move” any more; the unstable thimble continues
to say that m0 6= 0. The stable thimbles connected to the Higgs vacua continue to show
the same shape, but their unstable counterparts collapse into 0 (by overlapping its stable
thimble) and therefore there is intersection with the real axis and so m± 6= 0; however, there
is no integer-valued combination of m

�

that recovers the correct results for �
R

= 0, but this
is quite expected, as the Morse decomposition along thimbles is not legitimate when we are
on a Stokes ray, on which we clearly are (the imaginary axis in the complex plane of the
parameter � is a “Stokes ray”)1. An important remark to make now is that the original
integral is continuous (in fact, it is holomorphic) in � and therefore there cannot be any
discontinuity in the computation of, say the partition function Z in �

R

= 0, so we must have
Z [�

R

! 0+] = Z [�
R

! 0�] = Z [�
R

= 0]. By examining the integration along the thimble
connected to 0, we find that it is discontinuous in �

R

= 0, and again, this is not surprising
as the thimble shape goes on a radical change between the two cases. The change in sign

1
see [witten] for a detailed explanation of the Stokes phenomenon with respect to the Airy integral
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2 Considerations from Morse theory

2.1 Morse theory for the 0-dimensional case

In this brief introduction to complex Morse theory (also known as Picard-Lefschetz theory),
we focus on the fundamental aspects which are relevant for the present discussion of the 0-
dimensional �4 model. We follow [witten] for the notation, keeping in mind that the formulas
can be easily extended to the real-life case of quantum field theories with many degrees of
freedom.

Let us say we have some action S and we want to calculate the expectation value of
some observable which is a (holomorphic) function f of the only degree of freedom of the
0-dimensional theory, the real ”field” �. The action is a complex holomorphic function of this
field and we set S = SR + i SI , while the computation of the expectation value is carried on
along a given integration cycle C. In our model, we simply set C = R and we are interested
in correlators such as:

h�ni =
1

Z

Z

R

d��ne�S(�) (4)

with the partition function given by:

Z =

Z

R

d� e�S(�) (5)

Morse theory states that integrals such as that in (4) can be decomposed as a sum of
integrals along Lefschetz thimbles J

�

associated with the critical points of the action in the
complex plane (the field is thus complexified):

h�ni =
1

Z

X

�

m
�

Z

J�

d��ne�S(�) (6)

where we call the complexified field � = x+ i y. The m
�

are integer coe�cients with sign
and their values are thoroughly discussed below for this model. Each of these integrals is
guaranteed to be convergent and they also share the striking property that along them the
imaginary part of the action remains constant, so the sign problem due to the imaginary
part of the action is avoided. Now let us call {�

�

} the set of all the action critical points
(which are assumed to be non-degenerate). As SI stays constant along the thimbles, formula
(6) can be rephrased as:

h�ni =
1

Z

X

�

m
�

e�i S

I(��)

Z

J�

d��ne�S

R(�) (7)

3

which renders the integration over a real Boltzmann weight manifest. Let us now see
how integration along the thimbles is implemented. The stable thimble J

�

associated with
the critical point �

�

is defined as the curve in the � complex plane given by those solutions
of the equations of steepest descent, that is:

(

dx

dt

= �@S

R(x,y)
@x

dy

dt

= �@S

R(x,y)
@y

(8)

that converge to the critical point �
�

for t ! +1. To recover these curves, in practice
one integrates the equations of steepest ascent (the same as (8) but with the + sign) starting
near the critical point �

�

for an arbitrarily long time t, provided that the starting direction
is choosen correctly: the direction (in the xy plane) of the thimble J

�

near the critical point
is given by the eigenvector of positive eigenvalue of the hessian matrix of SR (x, y) computed
at the critical point (by holomorphicity it has two eigenvalues opposite in sign). By using the
steepest ascent equations and the chain rule, it easy to show that SR always increases along
the flow, so our integration, as t! +1, brings exp

�

�SR

�

to 0, thus ensuring convergence
of the integrals along the thimble. Associated with a given critical point �

�

there is also an
unstable thimble K

�

, which can be recovered by the same procedure described above, but
with the eigenvector of the hessian of SR with negative eigenvalue as its tangent direction
at the critical point. The unstable thimble is needed because the coe�cient m

�

count the
intersection of such thimbles with the original domain of integration, which in our case is the
real axis (the sign ambiguity is not resolved just by this definition, but it can be deduced by
means of other considerations).

2.2 The 0-dimensional �4

theory

In this section we apply the previous considerations to the study of the action:

S (�) =
1

2
��2 +

1

4
��4 (9)

with � 2 R+ and � = �
R

+ i �
I

2 C. In particular, we will see how the sign of �
R

a↵ects
the values of m

�

; the great relevance of this sign has already been observed while applying
complex Langevin to this model.

If we now complexify the field by setting � = x + i y, we get:
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1.1 The 0-dimensional �4

theory

We will be concerned with to the study of the action

S (�) =
1

2
��2 +

1

4
��4 (1)

with � 2 R, � 2 R+ and � = �
R

+ i �
I

2 C. This is obviously a toy model, and one regards
as correlators plain one-dimensional integrals such as

h�ni =
1

Z

Z

R

d� �n e�S(�) (2)

with the partition function given by:

Z =

Z

R

d� e�S(�) (3)

The solution is given in terms of a modified Bessel function, i.e. Z =
p

�

2�

e
�2

8� K� 1
4
(�

2

8�

),

di↵erentiating appropriately which one can get any of the (2).

The choice of a complex � is a prototypal case of the sign problem: with a complex
action, we miss a positive semi-definite measure and hence a probability distribution to start
with; in particular, a direct access to Monte Carlo methods is ruled out.

1.2 Complex Langevin for the 0-d �4

theory

It was realized long time ago that a solution to the sign problem could be searched in the
context of Stochastic Quantization: the Langevin equation admits a formal solution also for
complex actions, in particular via the Fokker-Planck formulation [2, 3]. To turn the formal
arguments into a rigorous proof eventually turned out to be hard and numerical instabilities
(suggesting problems) were in particular discussed in the context of the theory at hand [1].

We can complexify the field by setting � = x + i y. As a result, real and imaginary part
of the action read

SR =
1

2

⇥

�
R

�

x2 � y2
�

� 2�
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+ 2�
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x3y � xy3
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Langevin equations are given by

d

d⌧
x(⌧) = �@SR

@x
+ ⌘(⌧) = ��

R

x + �
I

y � �x3 + 3�xy2 + ⌘(⌧)

d

d⌧
y(⌧) =

@SR

@y
= ��

R

y � �
I

x + �y3 � 3�x2y

where ⌧ is the stochastic time in which the solution evolves and we have adhered to the
recipe of adding the gaussian noise ⌘(⌧) to the equation for the real part of the field only
(see later).
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This is a prototypal toy model for a field theory displaying a sign problem. Since the 
(quite old) paper by J. Ambjorn (Phys.Lett.B 1985) it has been actracting attention.

Francesco Di Renzo



A rich scenario ...
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stable/unstable thimbleA continuity argument tells you the 

correct combinations of weights!

from which follows:

@SR

@x
= �

R

x� �
I

y + �x3 � 3�xy2

@SR

@y
= ��

R

y � �
I

x + �y3 � 3�x2y

The hessian is built from the second derivatives of SR and takes the form:

H (x, y) =

✓

�
R

+ 3�x2 � 3�y2 ��
I

� 6�xy
��

I

� 6�xy ��
R

� 3�x2 + 3�y2

◆

(10)

There are 3 critical points: �0 = 0 and �± = ±
p

��

�

(which are the two, complex valued,
“Higgs vacua”). As for the m

�

, the situation is quite di↵erent between the 3 cases �
R

> 0,
�

R

< 0 and �
R

= 0: in each case we computed the stable and unstable thimble associated
with each critical point with the procedure described above. Figures 1, 2 and 3 show the
results for the three cases.

From Figure 1, we see that the unstable thimbles related to the Higgs vacua do not
intersect the real axis and therefore these points do not contribute to the integrals, that is
m± = 0, so we must have m0 = 1 and in fact with this assumption and by integrating along
the stable thimble attached to �0, we recover the correct results for, say, Z =

R

e�S (the
integration can be easily carried on along the real axis both analitically and numerically,
as the real part of the action grows very large with x and so oscillations are damped out).
The case �

R

< 0 depicted in Figure 2 is a totally di↵erent matter, as we cross the Stokes
ray �

R

= 0 while changing sign to �
R

. Now we see that the unstable thimbles connected to
the Higgs vacua do intersect the real axis and therefore m± 6= 0, as well as m0 6= 0. The
correct combination which recovers the expected results for the integrals turns out to be
m0 = �1 and m± = +1. Which is the origin of this discontinuity? If we hadn’t known the
correct result from the beginning, how would have we calculated the m

�

? The answer lies
in considering the case �

R

= 0, which exhibits the Stokes phenomenon, showed in Figure 3.
The stable thimble connected to 0 exhibits the Stokes phenomenon, in fact it “collapes” into
the Higgs vacua, from which it does not “move” any more; the unstable thimble continues
to say that m0 6= 0. The stable thimbles connected to the Higgs vacua continue to show
the same shape, but their unstable counterparts collapse into 0 (by overlapping its stable
thimble) and therefore there is intersection with the real axis and so m± 6= 0; however, there
is no integer-valued combination of m

�

that recovers the correct results for �
R

= 0, but this
is quite expected, as the Morse decomposition along thimbles is not legitimate when we are
on a Stokes ray, on which we clearly are (the imaginary axis in the complex plane of the
parameter � is a “Stokes ray”)1. An important remark to make now is that the original
integral is continuous (in fact, it is holomorphic) in � and therefore there cannot be any
discontinuity in the computation of, say the partition function Z in �

R

= 0, so we must have
Z [�

R

! 0+] = Z [�
R

! 0�] = Z [�
R

= 0]. By examining the integration along the thimble
connected to 0, we find that it is discontinuous in �

R

= 0, and again, this is not surprising
as the thimble shape goes on a radical change between the two cases. The change in sign

1
see [witten] for a detailed explanation of the Stokes phenomenon with respect to the Airy integral
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A number of issues!

- How many thimbles contribute? What are the weights? ... but for field theories ...

- It could be that we can take into account one single thimble 

Why? Thermodynamic limit plus universality 

(same degrees of freedom, symmetries and symmetry representations, 

 PT, naive continuum limit as the original formulation...)

- We get a so-called residual phase

which should not hurt that much ...

found tiny in Fujii et al JHEP 1310 2013!

computable as in arXiv 1403.5637, accepted on PRD

and thus can be taken into account by reweighting.

• Consider the global minimum of SR on the original domain (say φglob-min). In the 
most interesting cases, this is a stationary point also of the complexified action. 

• It turns out that the thimble J0 associated to φglob-min alone, defines a QFT with 
the same degrees of freedom, the same symmetries and symmetry 
representations and also the same perturbative expansion and naive continuum 
limit as the original formulation.

• By universality (which is not a theorem, but something we need to assume 
anyway), we expect that these properties essentially determine the behavior of 
physical quantities near a critical point (i.e. in the continuum limit), and hence the 
formulation in J0 seems an acceptable regularization of that QFT.

1. Universality

→ regularize the QFT on that single J0 attached to φglob-min.

J0C =
X

�

n�J�
thimble attached to the 
global minimum of SR

(This argument applies to statistical systems only near criticality)
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• It turns out that the thimble J0 associated to φglob-min alone, defines a QFT with 
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representations and also the same perturbative expansion and naive continuum 
limit as the original formulation.

• By universality (which is not a theorem, but something we need to assume 
anyway), we expect that these properties essentially determine the behavior of 
physical quantities near a critical point (i.e. in the continuum limit), and hence the 
formulation in J0 seems an acceptable regularization of that QFT.

1. Universality

→ regularize the QFT on that single J0 attached to φglob-min.

J0C =
X

�

n�J�
thimble attached to the 
global minimum of SR

(This argument applies to statistical systems only near criticality)Residual phase
As noticed at the beginning, there is still a phase

1

Z0

Z

J0

Y

x

d�
x

e�SR[�]O[�]

det(Tφ)
(Tφ  is the tangent space to J0 in φ. )

Does it lead to a “sign problem” ? (which means <dΦ> ≈ e-V )  We can’t exclude it, BUT:
• it is completely neglected in the saddle point method.
• The orientation is not expected to oscillate unpredictably, but should interpolate 

smoothly between the directions of steepest descent and the asymptotic directions 
of convergence.

• dΦ=1 at leading order and <dΦ> ≪ 1 are strongly suppressed by e-S ,
➡ There is strong correlation between phase and weight (precisely the lack of such 

correlation is the origin of the sign problem),
• Best evidence: results of the Tokyo group (JHEP 1310 (2013) 147)                  

( <dΦ> > 0.99 for the parameters studied there )

In the following we will argue as if only one thimble should be taken into account 
(e.g.      in our toy model) and will also (in the end) assume that the residual phase 
should be accounted for by reweighting once we have a suitable stochastic process on 
the thimble.

�R > 0



A few algorithmic solutions that we already know



Algorithms?! ... i.e. can we simulate on a thimble?

But in our toy model we know very 
well the relevant direction: only 1 
dimension, and thus the tangent 
space amounts simply to the only 
direction you always know, i.e. 
that of the gradient of the action!

Langevin Algorithm on a thimble

d

d⌧
�(R)
a,x
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R

��(R)
a,x

+ ⌘(R)
a,x

d

d⌧
�(I)
a,x
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R

��(I)
a,x

+ ⌘(I)
a,x

Bounded, real 
action: use MC.
E.g. Langevin algorithm

How can I stay in J0 ?
Preserve J0 

by construction!
Need to be projected on 
the tangent space to J0

I want to compute:
1

Z0

Z

J0

Y

x

d�
x

e�S[�]O[�]

Bounded from below on J0 !

1

Z0
e�iSI

Z

J0

Y

x

d�
x

e�SR[�]O[�]

Constant on J0 !

Computing the tangent space Tφ(J0) at a generic φ seems impossible

(How do we know which neighbors of φ will eventually fall in φglob-min under SD...?)

... unless we think in 5D!!

Langevin is the natural candidate!

On the thimble by very definition! Noise should be extracted on the thimble!



Algorithm 1 A generalization of Langevin  Phys.Rev.D86 2012
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Computing the tangent space Tφ(J0) at a generic φ seems impossible
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Langevin is the natural candidate!

On the thimble by very definition! Noise should be tangent to the thimble!
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require that: L@SR(⌘) = 0 , [@SR, ⌘] = 0

Which also leads to a simple prescription to compute η:

, d

d⌧
⌘j(⌧) =

X

k

⌘k(⌧)@k@jSR,

0 = [@SR, ⌘(⌧)]k =
X

j

@jSR@j⌘k(⌧)�
X

j

⌘j(⌧)@j@kSR

Tφ=0(J0)

φ Tφ(J0)η

Projection on the tangent space
In fact, the tangent space at the stationary 
point φ = φglob-min is usually easy to compute.

So, I can get tangent vectors at any 
point if I can transport a vector η 
along the grad. flow ∂SR,  so that it 
remains tangent to J0.   This amounts to 

require that: L@SR(⌘) = 0 , [@SR, ⌘] = 0

Which also leads to a simple prescription to compute η:

, d

d⌧
⌘j(⌧) =

X

k

⌘k(⌧)@k@jSR,

0 = [@SR, ⌘(⌧)]k =
X

j

@jSR@j⌘k(⌧)�
X

j

⌘j(⌧)@j@kSR

But since at the critical point we 
know the tangent space, the 
problem is that of trasporting a 
vector along our gradient flow



Algorithm 1 How accurate must one be with Langevin?
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In principle everything is there, in particular
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How precisely should we approximate the thimble?
Equivalently: 

how large is the (red) 
region where the flat 
approximation of the 
thimble is enough?

Only as precise as to ensure that:
1. The homology class of the thimble should be preserved (when 

this is not the case, the system will diverge).
2.The fluctuations in SI should be limited, to keep the sign 

problem away.

Here we evolve
with Langevin

x

φmin

φ(s=0)

φ(s =τ)
x

τ

Region of applicability of the 

Hessian computed in φ min

Equivalently: 
how long needs the 
5th dimension be?

Applying the Algorithm

A question relevant in practice 
is: how much shall we go down 
towards the critical point?

In principle everything there, in particular

A different approach: HMC!
See Fujii et al JHEP 1310 2013

And of course the other issue is 
finite integration step!



Algorithm 1bis A very crude approach ... Gaussian approximationHow precisely should we approximate the thimble?
Equivalently: 

how large is the (red) 
region where the flat 
approximation of the 
thimble is enough?

Only as precise as to ensure that:
1. The homology class of the thimble should be preserved (when 

this is not the case, the system will diverge).
2.The fluctuations in SI should be limited, to keep the sign 

problem away.

Here we evolve
with Langevin

x

φmin

φ(s=0)

φ(s =τ)
x

τ

Region of applicability of the 

Hessian computed in φ min

Equivalently: 
how long needs the 
5th dimension be?

Applying the Algorithm

In principle everything there, in particular

Crudest approximation of the thimble
i.e. the flat vector space associated to positive 

eigenvalues of the Hessian:
@2SR[�]|�=�

global min

In other words, project everywhere the 
configurations according to the Hessian 

computed at the saddle point 

x

φmin

φ(s=τ=0)

very crude but,...



Gaussian approximation: there are cases in which it works!

In principle everything there, in particular

Crudest approximation of the thimble
i.e. the flat vector space associated to positive 

eigenvalues of the Hessian:
@2SR[�]|�=�

global min

In other words, project everywhere the 
configurations according to the Hessian 

computed at the saddle point 

x

φmin

φ(s=τ=0)

very crude but,...

The Bose gas on the thimble 
(Cristoforetti, Di Renzo, Mukherjee,  
Scorzato Phys. Rev. D 88 2013)
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agreement with the known results!
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Gaussian approximation: there are cases in which it works!

In principle everything there, in particular

Crudest approximation of the thimble
i.e. the flat vector space associated to positive 

eigenvalues of the Hessian:
@2SR[�]|�=�

global min

In other words, project everywhere the 
configurations according to the Hessian 

computed at the saddle point 

x

φmin

φ(s=τ=0)

very crude but,...

The Bose gas on the thimble 
(Cristoforetti, Di Renzo, Mukherjee, 
Scorzato Phys. Rev. D 88 2013)Putting the three volumes together, we see the Silver Blaze effect.
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Gaussian approxim.: there are cases in which it does not work!

In principle everything there, in particular
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Chiral Condensate

4 chiral Random Matrix Theory

Instead of approaching QCD head on we study chiral random matrix theory [27–29] with
nonzero chemical potential, which has a similar structure with a fermion determinant
in the measure, but at the same time is much simpler and possible to solve analytically.
Chiral random matrix theory has already provided several deep insights into QCD at
nonzero chemical potential: it has explained the failure of the quenched approximation
[30], it has uncovered the OSV relation [31] which replaces the Banks-Casher relation
[32] at nonzero chemical potential and it has revealed the surprising phase structure of
QCD with bosonic quarks at nonzero chemical potential [33]. The reason why the far
simpler random matrix theory can give direct insights into QCD is that the quark mass
dependence of the chiral condensate and baryon density are uniquely determined by
the flavor symmetries in the microscopic limit. Since QCD and chiral random matrix
theory have the exact same flavor symmetries, we can use the analytic tools of chiral
random matrix theory to derive the universal predictions for QCD.

The partition function reads

Z
Nf

N

(m) =

Z
d�d detNf (D(µ) +m) exp

�
�N · Tr[ † + �†�]

�
, (4.1)

where

D(µ) +m =

✓
m i cosh(µ)�+ sinh(µ) 

i cosh(µ)�† + sinh(µ) † m

◆
. (4.2)

The degrees of freedom,  and �, are general complexN⇥N matrices, so �
ij

= a
ij

+ib
ij

,
 

ij

= ↵
ij

+ i�
ij

and d�d = dadbd↵d�. This chiral random matrix theory was
introduced in [16], but uses the redefined parameters of [17]. Notice that

det⇤(D (µ) +m) = det(D (�µ⇤) +m) (4.3)

just as in QCD. In the microscopic limit N ! 1 with m̃ = Nm and µ̃ =
p
Nµ kept

constant, the matrix model may be shown to be equivalent to the ✏-regime of chiral
perturbation theory [16, 35–37].

4.1 Analytical results

We will consider the theory with two mass degenerate flavors, N
f

= 2, and perform
measurements of the mass dependent chiral condensate

1

N
h⌘̄⌘i = 1

N
@
m

log (Z) , (4.4)
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See A. Mollgaard, K. Splittorff, Phys. Rev D88 2013
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Algorithm 2 Metropolis

Originally proposed for U1 one-plaquette model (Cristoforetti, Mukherjee, Scorzato PRD 
Rapid 88 2013)

Lefschetz thimble: algorithm

Metropolis 

η n-dim random vector living on the 
manifold defined by the 
eigenvectors of the Hessian 
computed at the critical point with 
positive eigenvalues

|η| distance along the thimble

d�i(r)

dr
=

1

r

�S

��i(r)

�i(n+ 1) = �i(n) + �r
�S

��i

|η|/δr number of steps along the steepest 
descent

In the neighbourhood 
of a critical point

S[�] = S[�0] + SG[⌘] +O(|⌘|3)
SG =

1

2

X

k

�k⌘
2
k

�i = �0
i +

X

k

wki⌘k

G0 is the flat thimble 
associated to the gaussian 
action SG

The λ and w are 
solutions of Hwk = �kw̄k where H is the Hessian

PRD Rapid 88, 051502 (2013)

The idea of a Metropolis stems from the fact that near 
the critical point the action is gaussian and so ...

- Consider the theory that is purely gaussian and in 
the proximity of the critical point is 
“undistinguishable” from the complete theory

- Extract a point for that theory and ... 

- ... take a SD towards the critical point down to the 
region where the two theories are equivalent and ...

- ... take a SA from that point for the complete theory

- Accept/reject with 

where G is a gaussian random variable with mean 0 and variance 1 and � is the
(positive) eigenvalue of the hessian of SR.

• We compute �0 (r = ") using the formula:
(

x (r = ") = x(�) + w11"�⌘

y (r = ") = y(�) + w21"�⌘
(13)

where
�

x(�), y(�)
�

is the critical point the extracted thimble J
�

0 is attached to and
✓

w11

w21

◆

(14)

is the (normalized) eigenvector of the hessian of SR with positive eigenvalue.

• We integrate the (steepest ascent) equations:
(

dx

dr

= 1
r

@S

R(x,y)
@x

dy

dr

= 1
r

@S

R(x,y)
@y

(15)

until r = 1 for N
"

= 1
"

steps; the final result is the proposal of the configuration
�0 (r = 1) 2 J

�

0 .

• The configuration �0 = �0 (r = 1) 2 J
�

0 is accepted with probability:

Pacc = min
n

1, e�[SR(�0)�S

R(�)]+[SG(⌘0)�SG(⌘)]
o

(16)

where the acceptation probability is corrected with the proposal probability for ⌘0, as
required by the Metropolis scheme.

Given a set of N independent field configuration generated by the described algorithm,
the expectation value of an observable O (�) can be obtained by:

hOi =

N

P

k=1
O (�

k

) J
k

e�i S

I(�k)

N

P

k=1
J

k

e�i S

I(�k)

(17)

where the imaginary part of the action is taken into account because it is constant along
a given thimble, but changes value in jumping between di↵erent thimbles. J

k

is the jacobian
determinant for the k-th field configuration, which is complex-valued. Formula (17) is a
reweighting which takes into account the complex jacobian due to the change of variables
involved in the algorithm, so in principle it could generate a residual sign problem; however,
as stated in [franzgigimarco], we expect it to be much smaller than the original one (of course
this holds for a many-dof field theory - here the original integral can be easily computed
directly), though this should be checked for each theory examined. We did observe no sign
problem for any value of the parameters. We should also mention that the first results for
the 4-dimensional �4 theory with chemical potential ([kikukawa]) are encouraging in this
sense2.

2
in the reference they use a di↵erent approach to sample field configurations on the thimble, so the
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Algorithm 2 Metropolis

It works very well for our toy model (the algorithm has a technical parameter on which 
it depends!)



An interesting success for the toy model
from which we try to step forward



Algorithm 3 Ideal sampling on the thimble!
Notice that for a 0-dim toy model an algorithm can be implemented that performs ideal 
sampling

The idea is simple: on each SD curve there is a 1-1 correspondence configuration-
action, i.e. on a single SD if you extract a value for the action you extract a 
configuration ... and here we have only 2 SD curves!

Leaving out the residual phase that can be accounted for by reweighting ... 

... but then we can invert 

... extract a random number 
and get an action value 
(i.e. a configuration) via

Good! You are asked to do the only thing well under 
control: integrating the path that defines the thimble!



Let’s try to step forward ...

Let’s now discharge both charts and residual phase (we can go back to them ...)

Z =
Z

J�

dz1 ^ . . . ^ zn e�S =
X

charts c

Z

�c

nY

i

dyc
i det(J) e�S =

X

charts c

Z

�c

nY

i

dyc
i ei� e�S

where a point on the thimble is singled out by giving the direction along which one leaves 
the critical point and the time one integrates Steepest Ascent for:     .

Z =
Z

�

nY

i

dyi e�S =
Z nY

i

dni �(|~n|2 � 1) Zn̂ =
Z nY

i

dni �(|~n|2 � 1)
Z

dt �n̂(t) e�S(n̂,t)

(n̂, t)

Now a new probability is defined that we can (in principle) exactly sample

Pn̂(t) = Z�1
n̂ �n̂(t) e�S(n̂,t) ! Fn̂(t) = Z�1

n̂

Z t

�1
dt0�n̂(t0) e�S(n̂,t0) ! F�1

n̂ (⇠)

But let’s pause for a moment:

- I have not yet told you how we got the previous expressions;

- One could suspect all this is not at all trivial!

- Notice that the y coordinates are known once you transport a basis.

Francesco Di Renzo



There is a tremendous amount of information in ...

... what we wrote down, which basically looks like a Faddeev-Popov trick to stay on the 
thimble. As a matter of fact we have inserted 1, written in an integral form ...

... if we simply want to regard our sampling along a single ascent as a proposal ...

... and a new version is ...

- Pick up a direction and a point        via

- Accept an evolution step                 with probability

(n̂, t)

(n̂, t)! (n̂0, t0)

... but we can try to mimic the previous formula ... 

1 = �n̂(t)
Z jY

k

dnj �(|~n|2 � 1)
Z

dt
nY

i

�(yi � yi(n̂, t))

P̃n̂(t) = Z̃�1
n̂ �̃n̂(t) e�S(n̂,t) ! F̃n̂(t) = Z̃�1

n̂

Z t

�1
dt0 �̃n̂(t0) e�S(n̂,t0) ! F̃�1

n̂ (⇠)

t = F̃�1
n̂ (⇠)

min{1,
e�S(n̂0,t0)

e�S(n̂,t)

Z̃�1
n̂ �̃n̂(t) e�S(n̂,t)

Z̃�1
n̂0 �̃n̂0(t0) e�S(n̂0,t0)

}

The determinat is telling you how the action and the manifod itself are sensitive to 
variations with respect to directions and evolution time. 



Conclusions, perspective, speculations ...

- Staying on a thimble can be an algorithmic challenge. We are trying to 
develop a new algorithm which tries to step forward from the ideal sampling 
which is viable in the case of 0-dim toy models.

- Basically the main virtue we are looking for is: sampling configurations 
doing the thing which is under very good control in order to stay on the 
thimble, i.e. solving for the steepest ascent paths that define the thimble.

- We are brave enough to go for the “real thing” for fairly simple models 
(matrix models).

- Variants have to be devised in order to allievate the tremendous 
computational effort which is needed for ideal sampling. We have some ideas. 
These are under study; (if we succeed...) they would be good stochastic 
processes on the thimble. The quest is a close relative to that for the 
density of states.

- If you think about a little bit, it could even be (or maybe we would like 
to think ...) that there is a chance to extend the method to non-thimble 
applications. After all, over there we do know what the correct manifolds 
are. 


