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Thimble regularization of field theories (M. C(ristoforetti, F. Di Renzo, L. Scorzato -
Phys.Rev.D86 2012) 1s still a fairly new attempt at the solution of the infamous sign problem.

While 1t 1s conceptually simple and elegant, it can be highly non trivial when 1t comes to
algorithmic 1issues. Staying on the thimble 1s the relevant issue. I will present a few (almost
trivial) results on a very basic model that are our starting point in the quest of a new
algorithm, having 1in mind that we can maybe learn something useful for a broader field of
applications. We are still quite far from success...

Agenda

- What 1s all this thimble story about (a quick primer)
- A few algorithmic solutions that are already available

- An 1interesting success for a toy model: ideal sampling on the thimble

- Can we step forward from that?

- Conclusions, perspectives, speculations



What 1s all this thimble story about (a quick primer)



A Summa of fundamental results from Morse Theory

We are all familiar with Steepest Descent paths that are the starting point for the
saddle point evaluation of integrals. These ideas have a generalization ...

The generalization of Steepest Descent paths are known as LEFSCHETZ THIMBLES ‘Jo

1n terms of which

/da: g(z)el @) = Zna/ dz g(z)e!?) C= Znaja
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Valid under suitable conditions on f(z) and g(xz) and where

- The greek index ¢ 1s attached to stationary points p, of the complex(ified) fﬂ@)

- Jois the union of all the SD paths that fall into ps, at infinite time

- no= {C K,) are the intersection numbers ...

- ... of the original domain with the dual thimbles K g union of Steepest Ascent

Everything comes with the right (real) dimension!



Thimbles 1n practice
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This 1s a prototypal toy model for a field theory displaying a sign problem. Since the
(quite old) paper by J. Ambjorn (Phys.Lett.B 1985) 1t has been actracting attention.
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A rich scenario
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A number of issues!
- How many thimbles contribute? What are the weights? ... but for field theories ...
- It could be that we can take into account one single thimble

Why? Thermodynamic limit plus universality

(same degrees of freedom, symmetries and symmetry representations,

PT, naive continuum limit as the original formulation...)

- We get a so-called residual phase 1

Z— e_SR[¢]O[¢]
which should not hurt that much ... 0/ Jo ,\\\\\\\\\\\*
det(qu)

found tiny 1in !
(T4 is the tangent space to Jyin ¢.)

computable as in arXiv , accepted on PRD

and thus can be taken into account by reweighting.

In the following we will argue as 1if only one thimble should be taken 1into account
(e.g.or > 01in our toy model) and will also (in the end) assume that the residual phase
should be accounted for by reweighting once we have a suitable stochastic process on

the thimble.



A few algorithmic solutions that we already know



Algorithms?! ... i.e. can we simulate on a thimble?

Langevin 1s the natural candidate!
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On the thimble by very definition! Noise should be extracted on the thimble!
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Algorithm 1 A generalization of Langevin Phys.Rev.D86 2012

Langevin 1s the natural candidate!
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On the thimble by very definition!
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Noise should be tangent to the thimble!

But since at the critical point we

know the +tangent space, the
problem 1s that of trasporting a

vector along our gradient flow

Losy(n) =0 < [0SR,n] =0



Algorithm 1 How accurate must one be with Langevin?

Region of applicability of the

Hessian computed in (b min

L ¢ (sw0)

In principle everything is there, in particular

Losy(n) =0 & [0SR, =0

0= [0SR, n(T)|x = ZajSRﬁjﬂk(T) - ZT]j(T)ajakSR

© %W(T) = 771«(7)(%5’]'5}%
k

A question relevant 1n practice

1s: how much shall we go down
(b (S = T) towards the critical point?

And of course the other 1issue 1is
finite integration step!

Here we evolve

with Langevin A different approach: HMC!

See Fujii et al JHEP 1310 2013



Algorithm 1bis A very crude approach ... Gaussian approximation

Here we evolve
with Langevin

Region of applicability of the

Hessian computed in (b min




Gaussian approximation: there are cases in which 1t works!
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Gaussian approximation: there are cases in which 1t works!
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Gaussian approxim.: there are cases 1n which i1t does not work!

Ny

Zy'(m) = / d®dY det™’ (D(u) +m)exp (—N - Tr[¥T¥ + o))

m i cosh(p)® + sinh(p)W
i cosh(p)®T + sinh () WT m

See A. Mollgaard, K. Splittorff, Phys. Rev D88 2013
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Algorithm 2 Metropolis

Originally proposed for Ul one-plaquette model (

),
3
S[#] = Sldo] + Sclnl + O(Inl°)
SG 3 12)\%”2 The idea of a Metropolis stems from the fact that near
2 3 the critical point the action 1s gaussian and so ...

- Consider the theory that 1is purely gaussian and 1in

the proximity of the critical point 1S
“undistinguishable” from the complete theory

- Extract a point for that theory and ...

- ... take a SD towards the critical point down to the
region where the two theories are equivalent and ...

- ... take a SA from that point for the complete theory

- Accept/reject with
Py = min {1, e_[SR(¢')—5R(¢)]+[5G(77’)—SG(77)]}



Algorithm 2 Metropolis

It works very well for our toy model (the algorithm has a technical parameter on which
1t depends!)
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An interesting success for the toy model
from which we try to step forward



Algorithm 3 Ideal sampling on the thimble!

Notice that for a 0-dim toy model an algorithm can be implemented that performs ideal
sampling

The 1dea 1s simple: on each SD curve there 1s a 1-1 correspondence configuration-
action, 1.e. on a single SD if you extract a value for the action you extract a

configuration ... and here we have only 2 SD curves!

Leaving out the residual phase that can be accounted for by reweighting ...
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Let’s try to step forward

Z:/ dzi A ...\ zp e ® Z / dezdet Z / de% P e

o charts C charts C

Let’s now discharge both charts and residual phase (we can go back to them ...)

— / dez e_S — /Hdnz 5(|ﬁ‘2 — 1) Zﬁ — /Hdnz 5(|ﬁ‘2 _ 1) /thﬁ(t) e—S(ﬁ,t)
I' i p i

where a point on the thimble 1s singled out by giving the direction along which one leaves
the critical point and the time one integrates Steepest Ascent for: (n,t).

Now a new probability is defined that we can (in principle) exactly sample

t
—_— —_— . —_ —_— - / —_—
Pﬁ(t) — Zﬁ 1 Aﬁ(t) e S(7,t) — Fﬁ(t) — Zﬁ 1/ dt, Aﬁ(t/) e S(7,t) — Fﬁ 1(6)
— OO
But let’s pause for a moment:
- I have not yet told you how we got the previous expressions;

- One could suspect all this 1s not at all trivial!

- Notice that the y coordinates are known once you transport a basis.
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There 1s a tremendous amount of information 1in

. what we wrote down, which basically looks like a Faddeev-Popov trick to stay on the
thimble. As a matter of fact we have inserted 1, written in an integral form ...

1= An(t) /Hdnj 5(|7|% — 1) /dt 116w —wi(a, 1)
k )

The determinat is telling you how the action and the manifod itself are sensitive to
variations with respect to directions and evolution time.

but we can try to mimic the previous formula

. 1f we simply want to regard our sampling along a single ascent as a proposal ...

n

t
Pa(t) = Z P Ap(t) e Fa(t) :Zflf dt’ Ay (#) e S o Fl(g)

. and a new version 1s ...

~

- Pick up a direction and a point (7,t) via t = }7:_1(5)

n

- Accept an evolution step (71,t) — (7,t") with probability

min{l, e—S(,t) -1 Aﬁ,(t/)e—S(ﬁ’,t’



Conclusions, perspective, speculations

- Staying on a thimble can be an algorithmic challenge. We are trying to

develop a new algorithm which tries to step forward from the ideal sampling
which 1s viable 1in the case of 0-dim toy models.

- Basically the main virtue we are looking for 1is: sampling configurations
doing the thing which 1is under very good control in order to stay on the

thimble, 1.e. solving for the steepest ascent paths that define the thimble.

- We are brave enough to go for the “real thing” for fairly simple models
(matrix models).

- Variants have to be devised 1n order to allievate the tremendous
computational effort which is needed for ideal sampling. We have some 1ideas.
These are under study; (if we succeed...) they would be good stochastic
processes on the thimble. The quest 1s a close relative to that for the
density of states.

- If you think about a 1ittle bit, it could even be (or maybe we would like
to think ...) that there is a chance to extend the method to non-thimble
applications. After all, over there we do know what the correct manifolds
are.



