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1 Muon Anomalous Magnetic Moment
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Figure 1. (L) Muon Vertex Function Diagram (R) Schwinger Term Diagram.
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Schwinger’s Term

Figure 2. The headstone of Julian Schwinger at Mt Auburn Cemetery in Cambridge, MA.



2 BNL E821 (0.54 ppm) and Standard Model Prediction

Value±Error Reference
Experiment (0.54 ppm) 116592089± 63 E821, The g− 2 Collab. 2006
Standard Model 116591828± 50 arXiv:1311.2198
Difference (Exp− SM) 261± 78

HVP LO 6949± 43 Hagiwara et al. 2011
Hadronic Light by Light 105± 26 Glasgow Consensus, 2007

Table 1. Standard model theory and experiment comparison [in units 10−11]
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Figure 3. (L) Vaccum polarization diagram. (R) Light by light diagram.

There is 3.3σ deviation!



Future Fermilab E989 (0.14 ppm)

Figure 4. The 50-foot-wide Muon g-2 electromagnet being driven north on I-355 between Lemont

and Downers Grove, Illinois, shortly after midnight on Thursday, July 25, 2013. Credit: Fermilab.

Almost 4 times more accurate then the previous experiment.



Connected Light by Light Diagram on Lattice

• In this talk, we focus on the calculation of connected light by light amplitude on lattice.

• This subject is started by T. Blum, M. Hayakawa, T. Izubuchi more than 5 years ago.
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Figure 5. Light by Light diagrams. There are 4 other possible permutations.

Mµ
LbL = −(−ie)6

∑

x,y,z

tr(γµSq(xop;x)γρSq(x; z)γνSq(z; y)γσSq(y, xop))

·
∑

x′,y ′,z ′

Gρρ′(x;x′)Gσσ ′(y; y ′)Gνν ′(z; z ′)

·
[

S(xsrc;x
′)γρ′S(x′; z ′)γν ′S(z ′; y ′)γσ ′S(y ′;xsnk)

+S(xsrc; z
′)γν ′S(z ′;x′)γρ′S(x′; y ′)γσ ′S(y ′;xsnk)

+other 4 permutations

]

(1)
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3 Lattice QED with Schwinger Term as an Example

We would like to do a standard Euclidean-space lattice calculation with a muon source and
sink, well separated in Euclidean time.

xsrc xsnk

xop, µ

x, ν x′, ν′

Figure 6. Schwinger term diagram.

Mµ
1-loop = (−ie)2

∑

x,x′

S(xsrc;x)γνS(x;xop)γµS(xop;x
′)γν ′S(x′;xsnk)

· Gνν ′(x;x′) (2)

Naively, the sum would require O(Volume2) computation, which is not affordable. We dis-
cussion two strategies:

• Calculate the sum stochasticly.

• Fast Fourior Transformation.

Both approaches make the problem O(Volume).



3.1 Stochastic Photon

Evaluate the photon propagator with N stochastic sample.
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Figure 7. Schwinger term diagram calculated with stochastic photon.



3.2 Exact Photon

Gµν(x; y) =
1

V

∑

k

δµν
k2

eik·(x−y) (6)

Mµ
1-loop = (−ie)2

1
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k

δνν ′
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·
[

∑

x

S(xsrc;x)γνe
ik·xS(x;xop)

]

γµ

[

∑

x′

S(xop;x
′)γν ′e−ik·x′
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]

(7)

Evaluate the express in brackets with Fast Fourier Transformation.
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Figure 8. Schwinger term diagram calculated with exact photon.



3.3 Finite Volume Effects
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Figure 9. Finite volume effects on F2. The data points are obtained using exact photon method.

• The solid line represent the analytic result in infinite volume and momentum transfer
q = 2π/L. The dashed line represent the analytic result in L3 volume and momentum
transfer q=2π/L.

• Lattice sizes are 323×128, 243×96, 163×64 with Ls=8 and tsnk− top= top− tsrc=T/4.

• Muon mass is mµ= 105MeV. a is the lattice spacing.



3.4 Discretization Errors
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Figure 10. Discretization errors on F2. The data points are obtained using exact photon method.

• mµL= 6.4 and lattice sizes are 323× 128, 243× 96, 163× 64, 123× 48 with Ls=8 and
tsnk− top= top− tsrc=T/4.

• q=2π/L is the momentum of the external photon.

• The line is 2nd order polynomial obtained by fitting the results from lattice calculations.

• Muon mass is mµ= 105MeV. a is the lattice spacing. An a4 term is visible.
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4 Light by Light Evaluation Strategy
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Figure 11. Light by Light diagrams calculated with one exact photon and two stochastic photon.

There are 4 other possible permutations.

• M = 12 stochastic photon fields for both A and B.

• S= 18 random wall sources for the external local current.

4.1 Computation Cost

• 2×S×M times inversion for the quark loop.

• 8×M2 times inversion for muon line.

• Statistics roughly proportion to S ×M2

• Cost grows as O(Volume) not O(Volume2).



4.2 Evaluation Formula
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]

γν ′e−ik·z ′

[

∑

y ′

S(z ′; y ′)γσ ′Bσ ′

m2(y ′)S(y ′; xsnk)

]

+S(xsrc; z
′)γν ′e−ik·z ′





∑

x′

S(z ′; x′)γρ′Aρ′

m1(x′)

(

∑

y ′

S(x′; y ′)γσ ′Bσ ′

m2(y ′)S(y ′; xsnk)

)





+other 4 permutations







(8)
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5 QED Light by Light Simulations
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Figure 12. Finite volume effect on F2.

• Replace quark loop by muon loop.

• Lattice sizes are 163× 64, 83× 32 with Ls=8 and tsnk− top= top− tsrc=T/4.

• The simulations were done in L3 volume and momentum transfer q=2π/L.

• Muon mass is mµ= 105MeV. a is the lattice spacing.



Detailed Simulation Data

Lattice Size mµ
Result±Err

(α/π)3
N ×S ×M2 confs

Var

(α/π)3

83× 64 0.2 0.1604± 0.0025 355× 36× 122 3.4

83× 32 0.05 0.0194± 0.0004 147× 36× 122 0.34

83× 32 0.1 0.0663± 0.0011 201× 36× 122 1.07

83× 32 0.2 0.1599± 0.0016 571× 36× 122 2.7

83× 32 0.4 0.1762± 0.0038 213× 36× 122 4.0

163× 64 0.05 0.0663± 0.0013 307× 18× 122 1.62

163× 64 0.1 0.1666± 0.0069 88× 18× 122 3.3

163× 64 0.2 0.2216± 0.0063 299× 18× 122 5.6

Figure 13. M stands for the number of stochastic A,B fields, S stands for the number of random

wall sources xop that we use to calculate the external current. The calculation is repeated N times.

Var = Err × N ×S ×M2
√

stands for the projected variance according to the uncertainty of the

result and the total number of confs.

• We have good control of the excited state effects.



6 Lessons Learned

• Average over different combinations of A, B electromagnetic field helps reducing the
statistical errors. This trick contribute 10 times the statistics, limited only by memory of
the machine.

• Random wall source at the location of the external current works very well. This trick
contribute around 10 times the statistics for 163× 64 lattice compare with point source,
works better at larger lattice.

• Using symmetric kinematics significantly reduces the statistial error as both the initial and
the final state are the lowest energy state possible. We use antiperiodic boundry condition
in z direction and set the momenta of initial and final muon to be ±π/L.

7 Future Plans

• Connected QCD Light by Light Diagram

• Disconnected QCD Light by Light Diagram


