Lattice Calculation of the Hadronic Light by Light Contributions to the Muon Anomalous Magnetic Moment

BY LUCHANG JIN Columbia University / RBC Collaboration

> Tom Blum (UConn) Norman Christ (Columbia) Masahi Hayakawa (Nagoya) Taku Izubuchi (BNL/RBRC) Christoph Lehner (BNL) Eigo Shintani (Mainz) Norikazu Yamada (KEK)

> > LATTICE 2014

June 23

Columbia University

UKQCD

Rudy Arthur (Odense) Peter Boyle (Edinburgh) Luigi Del Debbio (Edinburgh) Shane Drury (Southampton) Jonathan Flynn (Southampton) Julien Frison (Edinburgh) Nicolas Garron (Dublin) Jamie Hudspith (Toronto) Tadeusz Janowski (Southampton) Andreas Juettner (Southampton) Ava Kamseh (Edinburgh) Richard Kenway (Edinburgh) Andrew Lytle (TIFR) Marina Marinkovic (Southampton) Brian Pendleton (Edinburgh) Antonin Portelli (Southampton) Chris Sachrajda (Southampton) Francesco Sanfilippo (Southampton) Matthew Spraggs (Southampton) Tobias Tsang (Southampton)

RBC

Ziyuan Bai (Columbia) Thomas Blum (U Conn/RBRC) Norman Christ (Columbia) Xu Feng (Columbia) Tomomi Ishikawa (RBRC) Taku Izubuchi (RBRC/BNL) Luchang Jin (Columbia) Chulwoo Jung (BNL) Taichi Kawanai (RBRC) Chris Kelly (RBRC) Hyung-Jin Kim (BNL) Christoph Lehner (BNL) Jasper Lin (Columbia) Meifeng Lin (BNL) Robert Mawhinney (Columbia) Greg McGlynn (Columbia) David Murphy (Columbia) Shigemi Ohta (KEK) Eigo Shintani (Mainz) Amarjit Soni (BNL) Sergey Syritsyn (RBRC) Oliver Witzel (BU) Hantao Yin (Columbia) Jianglei Yu (Columbia) Daiqian Zhang (Columbia)

1 Muon Anomalous Magnetic Moment

$$\mu_{\mu} = -g_{\mu} \frac{e}{2m_{\mu}} \mathbf{s}_{\mu}$$

$$q = p' - p, \mu$$

$$p' \quad p'$$

Figure 1. (L) Muon Vertex Function Diagram (R) Schwinger Term Diagram.

$$\bar{u}(p')\Gamma^{\mu}(p',p)u(p) = \bar{u}(p') \bigg[F_1(q^2)\gamma_{\mu} + i\frac{F_2(q^2)}{4m} [\gamma_{\mu},\gamma_{\nu}]q_{\nu} \bigg] u(p)$$

$$F_2(0) = \frac{g_\mu - 2}{2} \equiv a_\mu$$

Schwinger's Term

Figure 2. The headstone of Julian Schwinger at Mt Auburn Cemetery in Cambridge, MA.

2 BNL E821 (0.54 ppm) and Standard Model Prediction

Value \pm ErrorReferenceExperiment (0.54 ppm)116592089 \pm 63E821, The g - 2 Collab. 2006Standard Model116591828 \pm 50arXiv:1311.2198Difference (Exp - SM) 261 ± 78 Hagiwara et al. 2011HVP LO 6949 ± 43 Hagiwara et al. 2011Hadronic Light by Light 105 ± 26 Glasgow Consensus, 2007

Table 1. Standard model theory and experiment comparison [in units 10^{-11}]

Figure 3. (L) Vaccum polarization diagram. (R) Light by light diagram.

There is 3.3σ deviation!

Future Fermilab E989 (0.14 ppm)

Figure 4. The 50-foot-wide Muon g-2 electromagnet being driven north on I-355 between Lemont and Downers Grove, Illinois, shortly after midnight on Thursday, July 25, 2013. *Credit: Fermilab.*

Almost 4 times more accurate then the previous experiment.

Connected Light by Light Diagram on Lattice

- In this talk, we focus on the calculation of connected light by light amplitude on lattice.
- This subject is started by T. Blum, M. Hayakawa, T. Izubuchi more than 5 years ago.

$$\mathcal{M}_{\mu}^{\mathsf{LbL}} = -(-ie)^{6} \sum_{x,y,z} \operatorname{tr}(\gamma_{\mu}S_{q}(x_{\mathrm{op}};x)\gamma_{\rho}S_{q}(x;z)\gamma_{\nu}S_{q}(z;y)\gamma_{\sigma}S_{q}(y,x_{\mathrm{op}}))$$

$$\cdot \sum_{x',y',z'} G_{\rho\rho'}(x;x')G_{\sigma\sigma'}(y;y')G_{\nu\nu'}(z;z')$$

$$\cdot \left[S(x_{\mathrm{src}};x')\gamma_{\rho'}S(x';z')\gamma_{\nu'}S(z';y')\gamma_{\sigma'}S(y';x_{\mathrm{snk}})\right]$$

$$+S(x_{\mathrm{src}};z')\gamma_{\nu'}S(z';x')\gamma_{\rho'}S(x';y')\gamma_{\sigma'}S(y';x_{\mathrm{snk}})$$

$$+\text{other 4 permutations}$$

(1)

Outline

- 1. Muon Anmalous Magetic Moment
- 2. BNL E821 (0.54 ppm) and Standard Model Prediction
- 3. Lattice QED with Schwinger Term as an Example
 - i. Stochastic Phton
 - ii. Exact Photon
 - iii. Finite Volume Effects
 - iv. Discretization Errors
- 4. Light by Light Evaluation Stragtegy
 - i. Computation Cost
 - ii. Evaluation Formula
- 5. QED Light by Light Simulations
- 6. Lessons Learned
- 7. Future Plans

3 Lattice QED with Schwinger Term as an Example

We would like to do a standard Euclidean-space lattice calculation with a muon source and sink, well separated in Euclidean time.

Figure 6. Schwinger term diagram.

$$\mathcal{M}^{1\text{-loop}}_{\mu} = (-ie)^2 \sum_{x,x'} S(x_{\text{src}};x) \gamma_{\nu} S(x;x_{\text{op}}) \gamma_{\mu} S(x_{\text{op}};x') \gamma_{\nu'} S(x';x_{\text{snk}})$$

$$\cdot \quad G_{\nu\nu'}(x;x')$$
(2)

Naively, the sum would require $\mathcal{O}(Volume^2)$ computation, which is not affordable. We discussion two strategies:

- Calculate the sum stochasticly.
- Fast Fourior Transformation.

Both approaches make the problem $\mathcal{O}(Volume)$.

3.1 Stochastic Photon

Evaluate the photon propagator with N stochastic sample.

$$G_{\mu\nu}(x;y) \approx \frac{1}{M} \sum_{m=1}^{M} A^m_{\nu}(x) A^m_{\nu'}(y)$$
 (3)

$$A^m_\mu(x) = \frac{1}{\sqrt{V}} \sqrt{2} \operatorname{Re} \sum_k \frac{\epsilon^m_\mu(k)}{\sqrt{|k^2|}} e^{ik \cdot x} \quad \frac{1}{M} \sum_{m=1}^M \epsilon^m_\mu(k) \epsilon^{m*}_\nu(k') \approx \delta_{\mu\nu} \delta_{kk'} \tag{4}$$

$$\mathcal{M}_{\mu}^{1\text{-loop}} = (-ie)^2 \frac{1}{M} \sum_{m=1}^{M} \left[\sum_{x} S(x_{\text{src}}; x) \gamma_{\nu} A_{\nu}^m(x) S(x; x_{\text{op}}) \right] \gamma_{\mu} \left[\sum_{x'} S(x_{\text{op}}; x) \gamma_{\nu'} A_{\nu'}^m(x') S(x'; x_{\text{snk}}) \right]$$

$$(5)$$

Figure 7. Schwinger term diagram calculated with stochastic photon.

3.2 Exact Photon

$$G_{\mu\nu}(x;y) = \frac{1}{V} \sum_{k} \frac{\delta_{\mu\nu}}{k^2} e^{ik \cdot (x-y)}$$
(6)

$$\mathcal{M}^{1\text{-loop}}_{\mu} = (-ie)^2 \frac{1}{V} \sum_k \frac{\delta_{\nu\nu'}}{k^2}$$
$$\cdot \left[\sum_x S(x_{\text{src}}; x) \gamma_{\nu} e^{ik \cdot x} S(x; x_{\text{op}}) \right] \gamma_{\mu} \left[\sum_{x'} S(x_{\text{op}}; x') \gamma_{\nu'} e^{-ik \cdot x'} S(x'; x_{\text{snk}}) \right]$$
(7)

Evaluate the express in brackets with Fast Fourier Transformation.

Figure 8. Schwinger term diagram calculated with exact photon.

3.3 Finite Volume Effects

Figure 9. Finite volume effects on F_2 . The data points are obtained using exact photon method.

- The solid line represent the analytic result in infinite volume and momentum transfer $q = 2\pi/L$. The dashed line represent the analytic result in L^3 volume and momentum transfer $q = 2\pi/L$.
- Lattice sizes are $32^3 \times 128$, $24^3 \times 96$, $16^3 \times 64$ with $L_s = 8$ and $t_{snk} t_{op} = t_{op} t_{src} = T/4$.
- Muon mass is $m_{\mu} = 105 \text{MeV}$. *a* is the lattice spacing.

3.4 Discretization Errors

Figure 10. Discretization errors on F_2 . The data points are obtained using exact photon method.

- $m_{\mu}L = 6.4$ and lattice sizes are $32^3 \times 128$, $24^3 \times 96$, $16^3 \times 64$, $12^3 \times 48$ with $L_s = 8$ and $t_{\rm snk} t_{\rm op} = t_{\rm op} t_{\rm src} = T/4$.
- $q = 2\pi/L$ is the momentum of the external photon.
- The line is 2nd order polynomial obtained by fitting the results from lattice calculations.
- Muon mass is $m_{\mu} = 105 \text{MeV}$. *a* is the lattice spacing. An a^4 term is visible.

Outline

- 1. Muon Anmalous Magetic Moment
- 2. BNL E821 (0.54 ppm) and Standard Model Prediction
- 3. Lattice QED with Schwinger Term as an Example
 - i. Stochastic Phton
 - ii. Exact Photon
 - iii. Finite Volume Effects
 - iv. Discretization Errors
- 4. Light by Light Evaluation Stragtegy
 - i. Computation Cost
 - ii. Evaluation Formula
- 5. QED Light by Light Simulations
- 6. Lessons Learned
- 7. Future Plans

4 Light by Light Evaluation Strategy

Figure 11. Light by Light diagrams calculated with one exact photon and two stochastic photon. There are 4 other possible permutations.

- M = 12 stochastic photon fields for both A and B.
- S = 18 random wall sources for the external local current.

4.1 Computation Cost

- $2 \times S \times M$ times inversion for the quark loop.
- $8 \times M^2$ times inversion for muon line.
- Statistics roughly proportion to $S \times M^2$
- Cost grows as $\mathcal{O}(Volume)$ not $\mathcal{O}(Volume^2)$.

4.2 Evaluation Formula

$$\mathcal{M}_{\mu}^{\mathsf{LbL}} = -(-ie)^{6} \frac{1}{M^{2}} \sum_{m_{1},m_{2}=1}^{M} \frac{1}{V} \sum_{k} \frac{\delta_{\nu\nu'}}{k^{2}}$$

$$\cdot \sum_{z} \operatorname{tr} \left\{ \gamma_{\mu} \left[\sum_{x} S_{q}(x_{\mathrm{op}};x) \gamma_{\rho} A_{\rho}^{m_{1}}(x) S_{q}(x;z) \right] \gamma_{\nu} e^{ik \cdot z} \left[\sum_{y} S_{q}(z;y) \gamma_{\sigma} B_{\sigma}^{m_{2}}(y) S_{q}(y,x_{\mathrm{op}}) \right] \right\}$$

$$\cdot \sum_{z'} \left\{ \left[\sum_{x'} S(x_{\mathrm{src}};x') \gamma_{\rho'} A_{\rho'}^{m_{1}}(x') S(x';z') \right] \gamma_{\nu'} e^{-ik \cdot z'} \left[\sum_{y'} S(z';y') \gamma_{\sigma'} B_{\sigma''}^{m_{2}}(y') S(y';x_{\mathrm{snk}}) \right]$$

$$+ S(x_{\mathrm{src}};z') \gamma_{\nu'} e^{-ik \cdot z'} \left[\sum_{x'} S(z';x') \gamma_{\rho'} A_{\rho'}^{m_{1}}(x') \left(\sum_{y'} S(x';y') \gamma_{\sigma'} B_{\sigma''}^{m_{2}}(y') S(y';x_{\mathrm{snk}}) \right) \right]$$

$$+ \text{other 4 permutations} \right\}$$

$$(8)$$

Outline

- 1. Muon Anmalous Magetic Moment
- 2. BNL E821 (0.54 ppm) and Standard Model Prediction
- 3. Lattice QED with Schwinger Term as an Example
 - i. Stochastic Phton
 - ii. Exact Photon
 - iii. Finite Volume Effects
 - iv. Discretization Errors
- 4. Light by Light Evaluation Stragtegy
 - i. Computation Cost
 - ii. Evaluation Formula
- 5. **QED Light by Light Simulations**
- 6. Lessons Learned
- 7. Future Plans

5 **QED** Light by Light Simulations

Figure 12. Finite volume effect on F_2 .

- Replace quark loop by muon loop.
- Lattice sizes are $16^3 \times 64$, $8^3 \times 32$ with $L_s = 8$ and $t_{snk} t_{op} = t_{op} t_{src} = T/4$.
- The simulations were done in L^3 volume and momentum transfer $q = 2\pi/L$.
- Muon mass is $m_{\mu} = 105 \text{MeV}$. *a* is the lattice spacing.

Detailed Simulation Data

Lattice Size	m_{μ}	$\frac{\text{Result} \pm \text{Err}}{(\alpha/\pi)^3}$	$N\times S\times M^2 \ {\rm confs}$	$\frac{\text{Var}}{(\alpha/\pi)^3}$
$8^3 imes 64$	0.2	0.1604 ± 0.0025	$355 imes 36 imes 12^2$	3.4
$8^3 \times 32$	0.05	0.0194 ± 0.0004	$147\times 36\times 12^2$	0.34
$8^3 \times 32$	0.1	0.0663 ± 0.0011	$201\times 36\times 12^2$	1.07
$8^3 imes 32$	0.2	0.1599 ± 0.0016	$571 imes 36 imes 12^2$	2.7
$8^3 \times 32$	0.4	0.1762 ± 0.0038	$213\times 36\times 12^2$	4.0
$16^3 \times 64$	0.05	0.0663 ± 0.0013	$307 \times 18 \times 12^2$	1.62
$16^3 \times 64$	0.1	0.1666 ± 0.0069	$88\times18\times12^2$	3.3
$16^3 \times 64$	0.2	0.2216 ± 0.0063	$299\times18\times12^2$	5.6

Figure 13. M stands for the number of stochastic A, B fields, S stands for the number of random wall sources x_{op} that we use to calculate the external current. The calculation is repeated N times. Var = Err × $\sqrt{N \times S \times M^2}$ stands for the projected variance according to the uncertainty of the result and the total number of confs.

• We have good control of the excited state effects.

6 Lessons Learned

- Average over different combinations of *A*, *B* electromagnetic field helps reducing the statistical errors. This trick contribute 10 times the statistics, limited only by memory of the machine.
- Random wall source at the location of the external current works very well. This trick contribute around 10 times the statistics for 16³ × 64 lattice compare with point source, works better at larger lattice.
- Using symmetric kinematics significantly reduces the statistial error as both the initial and the final state are the lowest energy state possible. We use antiperiodic boundry condition in z direction and set the momenta of initial and final muon to be $\pm \pi/L$.

7 Future Plans

- Connected QCD Light by Light Diagram
- Disconnected QCD Light by Light Diagram