Bottomonium spectra from NRQCD at finite T MEM vs preliminary results from a novel Bayesian Reconstruction

M.P. LOMBARDO	FRASCATI
D.K. SINCLAIR	ARGUNNE
G. AARTS/C.R. ALLTON	SWANSEA
TIM HARRIS/S.M. RYAN	TRINITY
S. KIM	SEJONG
	UTAH
JI. SKULLERUD	MAYNOOTH
A ROTHKOPF	+ITP, U. HEIDELBERG
Y. BURNIER	EPFĹ, LAUSANNE

arXiv[1402.6210]

Introduction

- Dissocation of heavy-quark bound states in a deconfined medium contributes to suppression of quarkonium yield in heavy-ion collions.
- Can suppression patterns provide a thermometer for quark-gluon plasma?
- Feed down less complicated than for charmonium.
- Lattice can complement other approaches such as analytical weak-coupling results from effective field theories and potential models.

$$\frac{dN_{\ell_{+}\ell_{-}}}{d\omega \, d^{3}p} \bigg|_{\boldsymbol{p}=\boldsymbol{0}} = \frac{5\alpha_{\rm em}^{2}}{27\pi^{2}} n_{\rm B}(\omega) \frac{\rho_{\rm V}(\omega)}{\omega^{2}}$$

$$\rho(\omega) \equiv \frac{1}{\pi} \operatorname{Im} \tilde{G}_R(\omega)$$
$$G_E(\tau) = \int_0^\infty d\omega \, K(\tau, \omega) \rho(\omega) \qquad K(\tau, \omega) = e^{-\omega\tau}$$

Introduction

- Dissocation of heavy-quark bound states in a deconfined medium contributes to suppression of quarkonium yield in heavy-ion collions.
- Can suppression patterns provide a thermometer for quark-gluon plasma?
- Feed down less complicated than for charmonium.
- Lattice can complement other approaches such as analytical weak-coupling results from effective field theories and potential models.

$$\frac{dN_{\ell_{+}\ell_{-}}}{d\omega \, d^{3}p} \bigg|_{\boldsymbol{p}=\boldsymbol{0}} = \frac{5\alpha_{\rm em}^{2}}{27\pi^{2}} n_{\rm B}(\omega) \frac{\rho_{\rm V}(\omega)}{\omega^{2}}$$

$$\begin{split} \rho(\omega) &\equiv \frac{1}{\pi} \mathrm{Im} \, \tilde{G}_R(\omega) \\ G_E(\tau) &= \int_0^\infty d\omega \, K(\tau, \omega) \rho(\omega) \qquad K(\tau, \omega) = e^{-\omega \tau} \end{split}$$

N_{f}	2+1	T/	΄Τ _c	N_{τ}	#configs
Light	Clover	,	~0	128	500
NRQCD	$O(v^4)$	0.	76	40	500
Gauge	Symanzik	0.	84	36	500
as	0.12fm	0.	95	32	1000
$1/a_{ au}$	5.67GeV	1.	09	28	1000
$\mathtt{a_s}/\mathtt{a_{ au}}$	3.5	1.	27	24	1000
$m_{\pi}/m_{ ho}$	0.45	1.	52	20	1000
L/a_s	24	1.	90	16	1000
[HadSpec: 0803.3960]					

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{T}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T$, cf. weak-coupling approaches which require ordering of other relevant scales.

N_{f}	2+1	T/T_c	N_{τ}	#configs
Light	Clover	~0	128	500
NRQCD	$O(v^4)$	0.76	40	500
Gauge	Symanzik	0.84	36	500
as	0.12fm	0.95	32	1000
$1/\mathtt{a}_{ au}$	5.67 GeV	1.09	28	1000
$\mathtt{a_s}/\mathtt{a}_{ au}$	3.5	1.27	24	1000
$\mathtt{m}_{\pi}/\mathtt{m}_{ ho}$	0.45	1.52	20	1000
L/a_s	24	1.90	16	1000
[HadSpec: 0803.3960]				

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{T}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T,$ cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{T}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T$, cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{T}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T,$ cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{T}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T,$ cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_0 + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T,$ cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{K}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T,$ cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{K}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T$, cf. weak-coupling approaches which require ordering of other relevant scales.

- Effective theory around the two-quark threshold: $E(p^2) = p_{\mathcal{K}} + \frac{p^2}{2m_b} + \dots$
- Requires only $m_b \gg T,$ cf. weak-coupling approaches which require ordering of other relevant scales.

• Ground state $\Upsilon(1S)$ peak is still present up to highest temperatures while excited state $\Upsilon(2S)$ peak is indiscernible at higher T.

• Ground state $\chi_{b1}(1P)$ peak disappears directly above T_c .

MEM vs novel Bayesian Reconstruction (BR)

$$G_E(\tau_i) = \sum_{l=1}^{N_\omega} K(\tau_i, \omega_l) \rho(\omega_l) \qquad N_\tau \sim \mathcal{O}(10), \ N_\omega \sim \mathcal{O}(1000)$$

$$\frac{\delta P[\rho \mid G_E \mid m]}{\delta \rho} = \frac{\delta}{\delta \rho} e^Q \stackrel{!}{=} 0 \qquad Q = -\frac{\chi^2}{2} + \alpha S$$

$$S = \int_0^\infty d\omega \left[\rho(\omega) - m(\omega) - \rho(\omega) \log\left(\frac{\rho(\omega)}{m(\omega)}\right) \right]$$

Bryan's algorithm restricts the dimension of search space in the optimization of Q to N_{τ} in the singular value decomposition of the kernel, K.

Shortcomings of MEM with Bryan's method?

- Search space too small to accommodate correct solution especially at high T (small N_{τ})?
- Entropy functional not optimal for regularizing problems faced with typical lattice data?

MEM vs novel Bayesian Reconstruction (BR)

$$G_E(\tau_i) = \sum_{l=1}^{N_\omega} K(\tau_i, \omega_l) \rho(\omega_l) \qquad N_\tau \sim \mathcal{O}(10), \ N_\omega \sim \mathcal{O}(1000)$$

$$\frac{\delta P[\rho \mid G_E \mid m]}{\delta \rho} = \frac{\delta}{\delta \rho} e^Q \stackrel{!}{=} 0 \qquad Q = -\frac{\chi^2}{2} + \alpha S$$

$$S = \int_0^\infty d\omega \left[\rho(\omega) - m(\omega) - \rho(\omega) \log\left(\frac{\rho(\omega)}{m(\omega)}\right) \right]$$

Bryan's algorithm restricts the dimension of search space in the optimization of Q to N_{τ} in the singular value decomposition of the kernel, K.

Shortcomings of MEM with Bryan's method?

- Search space too small to accommodate correct solution especially at high T (small N_{τ})?
- Entropy functional not optimal for regularizing problems faced with typical lattice data?

New axiomatic construction of prior

- New criteria based on smoothness of reconstructed spectra where the data does not constrain the solution adequately.
- Prior integrand is dimensionless.
- Hyperparameter which weights prior versus likelihood can be integrated out semi-analytically.
- Search whole N_{ω} -space possible with quasi-Newton optimization method (L-BGFS).

New axiomatic construction of prior

- New criteria based on smoothness of reconstructed spectra where the data does not constrain the solution adequately.
- Prior integrand is dimensionless.
- Hyperparameter which weights prior versus likelihood can be integrated out semi-analytically.
- Search whole N_{ω} -space possible with quasi-Newton optimization method (L-BGFS).

• Qualitatively similar to MEM spectra, sharper ground state peak.

• Ground state $\chi_{b1}(1P)$ appears to survive well into the plasma phase, striking contrast with MEM!

Peak fits

• Fit lineshape over an interval of fractional left-hand peak height, e.g. half-height.

Peak fits

• Fit lineshape over an interval of fractional left-hand peak height, e.g. half-height.

au_{\max} dependence of reconstruction

• Reconstruction depends on the number of correlator data used, here we examine the reconstucted widths and heights against the last correlator datum used, $G(\tau_{\rm max})$.

7 / 8

au_{\max} dependence of reconstruction

• Reconstruction depends on the number of correlator data used, here we examine the reconstucted widths and heights against the last correlator datum used, $G(\tau_{\rm max})$.

7 / 8

Results...

- MEM and BR reproduce ground state energies at low temperature.
- MEM and BR in qualitative agreement for S wave temperature dependence.
- Inconsistency between P wave spectral functions.

To do

- Resolve discrepancy for P waves τ_{max} dependence?
- Further investigation of default model dependence.
- Examine momentum-dependence of peak positions.
- Tuning new generation of ensembles with $\xi = 7$.

Results...

- MEM and BR reproduce ground state energies at low temperature.
- MEM and BR in qualitative agreement for S wave temperature dependence.
- Inconsistency between P wave spectral functions.

To do:

- Resolve discrepancy for P waves τ_{max} dependence?
- Further investigation of default model dependence.
- Examine momentum-dependence of peak positions.
- Tuning new generation of ensembles with $\xi = 7$.

Backup slides

MEM peak height vs $au_{ m max}$

Prior integrand: MEM vs BR

Peak height from average over width

