
Achieving strong scaling in many-GPU calculations
in Lattice QCD

Justin Foley, M. Clark

Microway, NVIDIA

Lattice 2014

Justin Foley, M. Clark Strong scaling with QUDA

Introduction

Majority of MILC routines now supported by QUDA
Chroma utilizes QUDA + QDP-jit
Amdahl’s law no longer the dominant performance bottleneck
Gauge generation requires scaling of linear solvers to 100s of
GPUs and beyond

Linear solves Fermion force Gauge force Total
0

1000

2000

3000

4000

5000

6000

7000
Ti
m
e
(s
)

4.69

5.94

6.20

3.87

2+1+1-flavor RHMC on 256 XK7

MILC
MILC+QUDA

Recent concerted efforts in software optimization and
algorithmic development

Justin Foley, M. Clark Strong scaling with QUDA

Sample Multi-GPU Dslash profile from previous QUDA
releases

Interior Dslash

Exterior Dslash

Time

"Comms"

Exterior Dslash

Packing

A representative Dslash profile for 2D lattice partitioning

Justin Foley, M. Clark Strong scaling with QUDA

Key features

Packing kernel copies halo data into a (device) buffer

“Comms” can include host-device transfers,
host-network-buffer transfers, message passing

Cuda streams enable concurrent kernel execution and
host-device copies

Packing and Dslash kernels execute sequentially - packing has
priority

Separate exterior Dslash kernels for each paritioned dimension

Significant launch overheads

Host launches work sequentially

Justin Foley, M. Clark Strong scaling with QUDA

New Dslash software optimizations

GPUDirect RDMA now supported in QUDA - communication
over IB can completely bypass host memory

Refactoring of kernel autotuning feature ⇒ signficant
reduction in launch overhead

Exploring latency reduction by fusing exterior Dslash kernels

Host threading using Pthreads - launch kernels and issue
messages concurrently

Stream priorities on compute 3.5 devices and above -
concurrent packing and interior Dslash kernel execution

Justin Foley, M. Clark Strong scaling with QUDA

Domain-decomposition preconditioning

Solve the preconditioned linear system

MAφ = Mη,

where M ≈ A−1, but involves less or no inter-processor
communication.

Non-overlapping Additive Schwarz preconditioning

Evaluate A−1ρ on each lattice subdomain ignoring
interprocessor communication
Mρ =

∑ND
d=1 A

−1
d ρd

Justin Foley, M. Clark Strong scaling with QUDA

Additive Schwarz preconditioning

M is block-diagonal in space-time indices (Block Jacobi)

Zero Dirichlet boundary conditions on each subdomain ⇒
κ(Ad) < κ(A)

Since M is a preconditioner, implement approximately
(half-precision data types, small number of inner solver
iterations)

Use MR or steepest-descent algorithm in the preconditioning
step

Justin Foley, M. Clark Strong scaling with QUDA

Additive Schwarz preconditioning

Impressive results with Clover and GCR

No observed benefit in HISQ CG

0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)

0

50

100

150

200

250

300

350

400

450

TF
LO

PS

BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo, F. Winter (JLab), M. Clark (NVIDIA)

64 128 192 256 320 384 448 512

Number of sockets/GPUs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
im

e
p

er
 s

o
lv

e
(s

ec
s)

Double-precision standard CG on the XE nodes

Mixed-precision standard CG - minimum time

Mixed-precision DDCG - minimum time

Mixed-precision standard CG - mean time

Mixed-precision DDCG - mean time

Time for linear solves at the light-quark mass on a 96
3
x192 lattice

Justin Foley, M. Clark Strong scaling with QUDA

Restricted Additive Schwarz preconditioning

In the preconditioner, overlap domains to mitigate boundary

effects

Preconditioning involves restriction to the interior of each
domain (red points) which violates Hermiticity

RAS-preconditioned HISQ GCR breaks even. What about
Clover?

Hermiticity-preserving overlapping Additive Schwarz - C.
DeTar, H. Na, C. Winterowd

Justin Foley, M. Clark Strong scaling with QUDA

S-step Krylov solvers

In linear solvers, communication occurs in the Dslash
operation and the calculation of vector inner products

Inner products involve global synchronizations - GPUs empty
out

Standard solver formulations involve short recurrence relations

Each iteration extends the Krylov subspace by a single vector

Tight coupling between Dslash and inner products

Justin Foley, M. Clark Strong scaling with QUDA

S-step Krylov solvers

S-step solvers separate the generation of Krylov basis vectors
and inner product computations

Opportunities for communication coalescing

Each iteration extends the Krylov basis by s (s > 1) vectors

Basis vectors are generated up front

Need to evaluate the same number of inner products as in the
single-step formulation, but now (at least) s inner-product
calculations can be coalesced into a single computation

Reduces the number of global synchronizations by a factor s

Justin Foley, M. Clark Strong scaling with QUDA

Sketch of s-step CG

i = 0 // labels outer iterations

r0 = b − Ax0
ri<0 = 0
while(!converged) do:

Starting with r si, generate a set of s+1

linearly-independent vectors, Vi,

in Span(rsi ,Arsi , . . . ,Aˆsrsi)

for j = 1, 2, . . . s:
Compute rsi+j, xsi+j

(Requires 2s+1 inner products involving residuals

from previous outer iteration and Vi, which

can be coalesced into a single reduction)

end for

i = i + 1
end do

Justin Foley, M. Clark Strong scaling with QUDA

By extending lattice subdomains, communications for the
Dslash operations can also be coalesced

Straightforward to implement in QUDA (recycle RAS
routines)

Stability issues:

In finite-precision, s-step methods become unstable for large s
Hoemenn (2010) - Problem is particularly severe for the
monomial basis: Vi = [rsi ,Arsi , . . . ,A

s rsi]
Chronopoulos and Gear (1989): CG convergence degrades
when s > 5
Later extended to s = 16 by orthogonalizing Vi (introduces
additional computation and communication)
Hoemenn: use alternative bases

Justin Foley, M. Clark Strong scaling with QUDA

S-step status

Prototype implementation of Hoemenn’s CA-CG solver in
QUDA

To begin with, test stability and convergence properties using
staggered quarks

Unfortunately, still in debugging phase - (hindered by typos in
original description)

For orthogonalization, utilize highly-optimized, parallel
TSQR (Demmel et al. 2008)

Magma implementation in the works

Justin Foley, M. Clark Strong scaling with QUDA

Summary

Many-pronged approach to achieving strong-scaling in QUDA
applications

Software optimizations

Autotuning optimizations
Kernel fusion
Host threading

Utilizing new hardware features

GPUDirect RDMA

Algorithmic Developments

Additive Schwarz Preconditioning
Restricted Additive Schwarz
S-step solvers

All under active development, but expect features to filter
through to release code over next six months

Justin Foley, M. Clark Strong scaling with QUDA

