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Introduction

Majority of MILC routines now supported by QUDA
Chroma utilizes QUDA + QDP-jit
Amdahl’s law no longer the dominant performance bottleneck
Gauge generation requires scaling of linear solvers to 100s of
GPUs and beyond
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Recent concerted efforts in software optimization and
algorithmic development
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Sample Multi-GPU Dslash profile from previous QUDA
releases

Interior Dslash

Exterior Dslash
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A representative Dslash profile for 2D lattice partitioning
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Key features

Packing kernel copies halo data into a (device) buffer

“Comms” can include host-device transfers,
host-network-buffer transfers, message passing

Cuda streams enable concurrent kernel execution and
host-device copies

Packing and Dslash kernels execute sequentially - packing has
priority

Separate exterior Dslash kernels for each paritioned dimension

Significant launch overheads

Host launches work sequentially
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New Dslash software optimizations

GPUDirect RDMA now supported in QUDA - communication
over IB can completely bypass host memory

Refactoring of kernel autotuning feature ⇒ signficant
reduction in launch overhead

Exploring latency reduction by fusing exterior Dslash kernels

Host threading using Pthreads - launch kernels and issue
messages concurrently

Stream priorities on compute 3.5 devices and above -
concurrent packing and interior Dslash kernel execution
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Domain-decomposition preconditioning

Solve the preconditioned linear system

MAφ = Mη,

where M ≈ A−1, but involves less or no inter-processor
communication.

Non-overlapping Additive Schwarz preconditioning

Evaluate A−1ρ on each lattice subdomain ignoring
interprocessor communication
Mρ =

∑ND
d=1 A

−1
d ρd
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Additive Schwarz preconditioning

M is block-diagonal in space-time indices (Block Jacobi)

Zero Dirichlet boundary conditions on each subdomain ⇒
κ(Ad) < κ(A)

Since M is a preconditioner, implement approximately
(half-precision data types, small number of inner solver
iterations)

Use MR or steepest-descent algorithm in the preconditioning
step
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Additive Schwarz preconditioning

Impressive results with Clover and GCR

No observed benefit in HISQ CG
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Restricted Additive Schwarz preconditioning

In the preconditioner, overlap domains to mitigate boundary

effects

Preconditioning involves restriction to the interior of each
domain (red points) which violates Hermiticity

RAS-preconditioned HISQ GCR breaks even. What about
Clover?

Hermiticity-preserving overlapping Additive Schwarz - C.
DeTar, H. Na, C. Winterowd
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S-step Krylov solvers

In linear solvers, communication occurs in the Dslash
operation and the calculation of vector inner products

Inner products involve global synchronizations - GPUs empty
out

Standard solver formulations involve short recurrence relations

Each iteration extends the Krylov subspace by a single vector

Tight coupling between Dslash and inner products
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S-step Krylov solvers

S-step solvers separate the generation of Krylov basis vectors
and inner product computations

Opportunities for communication coalescing

Each iteration extends the Krylov basis by s (s > 1) vectors

Basis vectors are generated up front

Need to evaluate the same number of inner products as in the
single-step formulation, but now (at least) s inner-product
calculations can be coalesced into a single computation

Reduces the number of global synchronizations by a factor s
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Sketch of s-step CG

i = 0 // labels outer iterations

r0 = b − Ax0
ri<0 = 0
while(!converged) do:

Starting with r si, generate a set of s+1

linearly-independent vectors, Vi,

in Span(rsi ,Arsi , . . . ,Aˆsrsi)

for j = 1, 2, . . . s:
Compute rsi+j, xsi+j

(Requires 2s+1 inner products involving residuals

from previous outer iteration and Vi, which

can be coalesced into a single reduction)

end for

i = i + 1
end do
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By extending lattice subdomains, communications for the
Dslash operations can also be coalesced

Straightforward to implement in QUDA (recycle RAS
routines)

Stability issues:

In finite-precision, s-step methods become unstable for large s
Hoemenn (2010) - Problem is particularly severe for the
monomial basis: Vi = [rsi ,Arsi , . . . ,A

s rsi ]
Chronopoulos and Gear (1989): CG convergence degrades
when s > 5
Later extended to s = 16 by orthogonalizing Vi (introduces
additional computation and communication)
Hoemenn: use alternative bases

Justin Foley, M. Clark Strong scaling with QUDA



S-step status

Prototype implementation of Hoemenn’s CA-CG solver in
QUDA

To begin with, test stability and convergence properties using
staggered quarks

Unfortunately, still in debugging phase - (hindered by typos in
original description)

For orthogonalization, utilize highly-optimized, parallel
TSQR (Demmel et al. 2008)

Magma implementation in the works
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Summary

Many-pronged approach to achieving strong-scaling in QUDA
applications

Software optimizations

Autotuning optimizations
Kernel fusion
Host threading

Utilizing new hardware features

GPUDirect RDMA

Algorithmic Developments

Additive Schwarz Preconditioning
Restricted Additive Schwarz
S-step solvers

All under active development, but expect features to filter
through to release code over next six months
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