Radial and orbital excitation energies of charmonium

Ben Galloway (HPQCD Collaboration)

Peter Knecht, Jonna Koponen, Christine Davies, Carleton DeTar

Lattice 2014, Columbia University

The Charmonium System

Mass (MeV)

Particle Data Group, http://pdg.lbl.gov

Previous Results — Clover on Asqtad

Fermilab Lattice and MILC Collaborations, arXiv:1211.2253

Summary of Calculation

- Calculate 2-point meson correlators using MILC code
- HISQ action for valence quarks
- Smeared source and sink operators used to improve overlap with excited states
- Gaussian covariant smearings specifically chosen for staggered quarks:

$$\left[1 + \frac{r_0^2 \cdot D^2}{4 \cdot n}\right]^n \xrightarrow{n \to \infty} \exp\left(\frac{r_0^2 \cdot D^2}{4}\right)$$

		Smearing 1	n_1	Smearing 2	<i>n</i> ₂
•	Coarse	1.5	10	3.0	20
	Fine	2.5	20	3.5	30

• Multiple possible pairings result in a matrix of correlators

Details of Lattices — MILC 2 + 1 + 1 HISQ

Label	<i>a</i> / fm	m_{ℓ}/m_s	Lattice size	am _c	$N_{ m cfg} imes N_t$
	(approx.)		$(L^3 \times T)$		
very coarse	0.15	1/5	$16^3 imes 48$	0.888	1020 imes 8
		1/10	$24^3 imes 48$	0.873	1000 imes 8
		phys	$32^3 imes 48$	0.863	1000 imes 8
coarse	0.12	1/5	$24^3 imes 64$	0.664	1053 imes 8
		1/10	$32^3 imes 64$	0.650	1000 imes 8
		phys	$48^3 imes 64$	0.643	1000 imes 8
fine	0.09	1/5	$32^3 \times 96$	0.450	300 × 8
		1/10	$48^3 imes 96$	0.439	300 imes 8
		phys	$64^3 imes 96$	0.433	565 imes 8
superfine	0.06	1/5	$48^{3} \times 144$	0.274	333 × 4

(Further details in arXiv:1212.4768)

Correlator Fits

- Simple multi-exponential fit with up to 8 exponentials
- Fit function takes the form

$$\sum_{i} A_{i}^{2} (e^{-E_{i}t} + e^{-E_{i}(L_{t}-t)}) - (-1)^{t/a} \cdot B_{i}^{2} (e^{-E_{i}t} + e^{-E_{i}(L_{t}-t)})$$

- Priors are set to be quite wide, e.g. priors for the amplitudes A_i and B_i are 0.01 ± 1.0 in lattice units.
- The oscillating part of the vector correlators allows for access to axial vector states such as the *h_c*.

Stability of Correlator Fits

Fixing the Lattice Scale

- $w_0 = 0.1715(9)$ fm [arXiv:1303.1670]
- Statistical errors mostly dominated by error on w_0/a
- Possibly also introduces some sea-quark mass dependence.
- Plots do not include error on physical value of w₀ since it is correlated between points. It can be added later as a systematic error.

	w_0/a on				
	$m_\ell/m_s = 1/5$	$m_\ell/m_s=1/10$	$m_\ell/m_s={ m phys}$		
very coarse	1.1119(20)	1.1272(14)	1.1367(10)		
coarse	1.3826(22)	1.4029(18)	1.4149(12)		
fine	1.9006(40)	1.9340(20)	1.9525(40)		
superfine	2.8956(52)		_		

(Values adapted from 1303.1670 and 1311.1474)

Computed Charmonium Spectrum

Spin-Averaged 2S - 1S Splitting

$h_c - J/\Psi$ Splitting

$J/\Psi - \eta_c$ (Hyperfine) Splitting

Details of Continuum Fit

• Let $x = (am_c)^2$. Then our fit function is:

$$p\left(1.0 + A_1 x + A_2 x^2 + A_3 x^3 + A_4 x^4 + A_5 x^5 + \chi_1 \delta_m (1.0 + \chi_{a^2} a^2) + \chi_2 \delta_m^2\right)$$

- Priors are again quite wide. Prior on the physical value taken as $p=110\pm20~{\rm MeV}$
- Continuum result:

$$116.2\pm1.4(\mathsf{stat.})\pm2.8(\mathsf{sys.})$$
 MeV

• PDG value is currently 113.2(7) MeV

$J/\Psi - \eta_c$ (Hyperfine) Splitting

A Sanity Check: η_c Decay Constant

A Sanity Check: Ratio of Vector Decay Constants

An Aside: Charm and Strange Quark Masses

•
$$m_c(3 \text{ GeV}, n_f = 4) = 0.988(6) \text{GeV}$$

• $m_c/m_s = 11.64(10)$

Summary

Completed:

- Identification of appropriate smearings to improve overlap with excited states.
- Runs at several different lattice spacings
- Fits to correlators obtained from these runs
- Continuum fit to hyperfine splitting results

To be done:

- Runs on further fine lattices ($m_\ell/m_s=1/5$ and $m_\ell/m_s=1/10$)
- Extension to superfine lattices
- Hybrid fit code utilising generalised eigenvalue method in development may provide better errors.