Search for a bound H-dibaryon using local six-quark interpolating operators

Jeremy Green
Anthony Francis Parikshit Junnarkar Chuan Miao Thomas Rae Hartmut Wittig
Institut für Kernphysik,
Helmholtz-Institut Mainz,
and PRISMA Cluster of Excellence,
Johannes Gutenberg-Universität Mainz

The 32nd International Symposium on Lattice Field Theory June 23-28, 2014
(2) Lattice setup
(3) Results
4. Discussion

H-dibaryon

Perhaps a Stable Dihyperon*

R. L. Jaffe \dagger

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, \ddagger Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of $-2) J^{P}=0^{+}$dihyperon (H) at 2150 MeV . Another isosinglet dihyperon $\left(H^{*}\right)$ with $J^{P}=1^{+}$ at 2335 MeV should appear as a bump in $\Lambda \Lambda$ invariant-mass plots. Production and decay systematics of the H are discussed.

TABLE I. Quantum numbers and masses of S-wave dibaryons.

$\mathrm{SU}(6)_{\mathrm{cs}}$ representation	C_{6}	J	$\mathrm{SU}(3)_{\mathrm{f}}$ representation	Mass in the limit $m_{\mathrm{s}}=0$ (MeV)
490	144	0	$\underline{\mathbf{1}}$	1760
896	120	1,2	$\underline{8}$	1986
280	96	1	$\underline{10}$	2165
175	96	1	$\underline{\mathbf{1 0}^{*}}$	2165
189	80	0,2	$\underline{27}$	2242
35	48	1	$\underline{35}$	2507
1	0	0	$\underline{28}$	2799

Experimental searches

FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

The strongest constraint comes from the "Nagara" event from E373 at KEK, which found a ${ }_{\Lambda \Lambda}{ }^{6} \mathrm{He}$ double-hypernucleus with binding energy

$$
B_{\Lambda \Lambda}=6.91 \pm 0.16 \mathrm{MeV} .
$$

The absence of a strong decay ${ }_{\Lambda}{ }^{6} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+H$ implies

$$
m_{H}>2 m_{\Lambda}-B_{\Lambda \Lambda} .
$$

(H. Takahashi et al., PRL 87, 212502 (2001))

Recent lattice calculations

Calculations	ve found		H-dib	on	g $m_{\pi}>m^{\prime}$	
collab.	method	N_{f}	action	$N_{\text {vol }}$	$m_{\pi}(\mathrm{MeV})$	$B_{H}(\mathrm{MeV})$
NPLQCD	2pt	3	clover	3	806	74.6(3.3)(3.4)
		$2+1$	aniso	4	390	13.2(1.8)(4.0)
			-clover	1	230	-0.6(8.9)(10.3)
HALQCD	B-B	3	clover	1	1171	48(4)
	potentials			3	1015	32.9(4.5)(6.6)
				1	837	37.4(4.4)(7.3)
				1	672	35.6(7.4)(4.0)
				1	469	26(4)

Lattice ensembles

CLS "E" ensembles:

- $N_{f}=2, O(a)$-improved Wilson fermions.
- $a=0.063 \mathrm{fm}, 64 \times 32^{3}$.
- Two pion masses: 451 MeV (E5) and 1 GeV (E1).
- Quenched strange quark.

κ_{s} tuned such that

$$
R_{3} \equiv \frac{m_{K}^{2}-\frac{1}{2} m_{\pi}^{2}}{m_{\Omega}^{2}}
$$

has its physical value.
We found κ_{s} close to $\kappa_{u d}$ for E1, so we set it to be equal.

Six-quark interpolating operators

Forming the product of six positive-parity-projected (two-component) quark fields,

$$
[a b c d e f]=\epsilon^{i j k} \epsilon^{l m n}\left(b_{i}^{T} C \gamma_{5} P_{+} c_{j}\right)\left(e_{l}^{T} C \gamma_{5} P_{+} f_{m}\right)\left(a_{k}^{T} C \gamma_{5} P_{+} d_{n}\right),
$$

where $P_{+}=\left(1+\gamma_{4}\right) / 2$, there are two local interpolating operators in the H -dibaryon channel:

$$
\begin{aligned}
H^{1} & =\frac{1}{48}([\text { sudsud }]-[\text { udusds }]-[\text { dudsus }]) \\
H^{27} & =\frac{1}{48 \sqrt{3}}(3[\text { sudsud }]+[u d u s d s]+[\text { dudsus }])
\end{aligned}
$$

which belong to the singlet and 27-plet irreps of $S U(3)_{f}$.
To further expand the set of operators, we also vary the level of quark-field smearing.

Timeslice-normalized smearing

Standard smearing is a polynomial in hopping term H :

$$
\tilde{q}(\vec{x}, t)=\sum_{\vec{y}} S(\vec{x}, \vec{y} ; t) q(\vec{y}, t)=(1+\alpha H)^{n} q .
$$

This introduces noise, of which broadest part can be reduced by normalizing:

$$
\tilde{q}_{N 1}(\vec{x}, t)=\frac{1}{N(\vec{x}, t)} \tilde{q}(\vec{x}, t), \quad N(\vec{x}, t)=\sqrt{\sum_{\vec{y}, a, b}\left|S_{a b}(\vec{x}, \vec{y} ; t)\right|^{2}},
$$

but this is difficult to do at the sink. Instead, we compute the timeslice-summed normalization, using stochastic estimation:

$$
N(t)^{2}=\sum_{\vec{x}, \vec{y}, a, b}\left|S_{a b}(\vec{x}, \vec{y} ; t)\right|^{2} \approx \frac{1}{n_{\text {noise }}} \sum_{\vec{x}, \vec{y}, a, b, i}\left|S_{a b}(\vec{x}, \vec{y} ; t) \eta_{b}^{(i)}(\vec{y}, t)\right|^{2},
$$

so that the smeared quark fields are defined as $\tilde{q}_{N}(\vec{x}, t)=\frac{1}{N(t)} \tilde{q}(\vec{x}, t)$. This procedure can be applied after a production run, to reduce the noise from smearing. For a dibaryon operator, $C_{N}\left(t_{f}, t_{i}\right)=\left(\frac{1}{N\left(t_{i}\right) N\left(t_{f}\right)}\right)^{6} C\left(t_{f}, t_{i}\right)$.

Smearing normalization

One configuration from E1; $\alpha \approx 0.75, n=280, N_{\text {noise }}=160+$ color-dilution

Correlators and masses

We compute the matrix of two-point functions,

$$
C_{i j}(t)=\sum_{\vec{x}}\left\langle O_{i}\left(t_{0}+t, \vec{x}\right) O_{j}^{\dagger}\left(t_{0}, \vec{x}_{0}\right)\right\rangle,
$$

and find effective masses from both its diagonal elements,

$$
m_{\mathrm{eff}, i}(t)=\frac{1}{\Delta t} \log \frac{C_{i i}(t)}{C_{i i}(t+\Delta t)},
$$

and from solving the generalized eigenvalue problem (GEVP),

$$
C_{i j}(t+\Delta t) v_{j}(t)=\lambda(t) C_{i j}(t) v_{j}(t) ; \quad m_{\mathrm{eff}}(t)=\frac{-\log \lambda(t)}{\Delta t}
$$

(We use $\Delta t=3 a$.)
These will approach the ground-state mass from above, with exponentially-decaying excite-state contamination.

All-mode averaging

Reduce costs by computing most samples using low-precision propagator solves; correct the bias with the difference between a high-precision and low-precision sample, evaluated at the same source:

$$
O=O_{x_{0}}-O_{x_{0}}^{(\mathrm{appx})}+\frac{1}{N_{\Delta x}} \sum_{\Delta x} O_{x_{0}+\Delta x}^{(\mathrm{appx})}
$$

The resulting variance is reduced by a factor of

$$
2\left(1-\frac{1}{N_{\Delta x}}\right)(1-r)+R^{\text {corr }}+\frac{1}{N_{\Delta x}},
$$

where

- r is the correlation between $O_{x_{0}}$ and $O_{\chi_{0}}^{(a p p x)}$,
- $R^{\text {corr }}$ is the average correlation between $O_{x_{0}+\Delta x}^{(\text {appx })}$ and $O_{x_{0}+\Delta x^{\prime}}^{(\text {appx }}$. We get a $\approx 2 \times$ speed-up for the propagators on E5; larger improvements will be expected as we go to lighter pion masses.
\rightarrow see poster by Eigo Shintani

Blocking algorithm for contractions

Pre-contract three propagators into a color-singlet at the source, e.g.,

$$
\mathcal{B}[s l l]_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime}, \alpha}^{\alpha^{\prime} b^{\prime} c^{\prime}}=\epsilon^{a b c}\left(C \gamma_{5} P_{+}\right)_{\beta \gamma}\left(S_{S}\right)_{\alpha^{\prime} \alpha}^{a^{\prime} a}\left(S_{l}\right)_{\beta^{\prime} \beta}^{b^{\prime} b}\left(S_{l}\right)_{\gamma^{\prime} \gamma}^{c^{\prime} c},
$$

then sum over permutations when contracting at the sink, e.g.,

$$
\begin{aligned}
& \text { [sudsud] }=\left(C \gamma_{5} P_{+}\right)_{\alpha \beta}\left(C \gamma_{5} P_{+}\right)_{\alpha_{1}^{\prime} \alpha_{2}^{\prime}} \epsilon^{a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime}} \epsilon^{a_{2}^{\prime} b_{2}^{\prime} c_{2}^{\prime}}\left(C \gamma_{5} P_{+}\right)_{\beta_{1}^{\prime} \gamma_{1}^{\prime}}\left(C \gamma 5 P_{+}\right)_{\beta_{2}^{\prime} \gamma_{2}^{\prime}}
\end{aligned}
$$

E5 ensemble

- $m_{\pi}=451 \mathrm{MeV}$
- $m_{\pi} L=4.6$
- 1881 gauge configurations.
- One source point with high- and low-precision solves.
- Sixteen source points with low-precision solves.
- Use both P_{+}and P_{-}projectors for forward/backward-propagating states. This corresponds to

$$
1881 \times 16 \times 2=60192 \text { samples }
$$

- Both point and smeared ($n=140$) quark fields. Combined with $H^{\mathbf{1}}$ and H^{27}, this gives four interpolating operators.

E5: two-point functions, smeared

Cross-term is suppressed by 2-3 orders of magnitude.

E5: effective masses, diagonal correlators

E5: effective mass, GEVP

Improvement over smeared $H^{\mathbf{1}}$ is small; no bound H -dibaryon seen.

E1 ensemble

- $m_{\pi}=1 \mathrm{GeV}$
- $m_{\pi} L=10$
- 168 gauge configurations.
- One source point with high- and low-precision solves.
- 128 source points with low-precision solves.
- Use both P_{+}and P_{-}projectors for forward/backward-propagating states. This corresponds to

$$
168 \times 128 \times 2=43008 \text { samples. }
$$

- $\kappa_{s}=\kappa_{u d}$, thus no mixing between $S U(3)_{f}$ singlet and 27-plet irreps.
- Three quark-field smearings: wide ($n=280$), medium ($n=140$), and narrow ($n=70$). This gives three interpolating operators.

E1: average correlation between sources, medium H^{1}

E1: effect of timeslice-normalized smearing

E1: effective masses, diagonal correlators

Wide smearing is too noisy to be useful in GEVP.

E1: effective mass, GEVP

Improvement over medium-smeared H^{1} is small; no bound H -dibaryon seen.

E1: comparison against other calculations

If the plateau for $t / a \in[11,14]$ the ground state, then there is a discrepancy.

Possible sources of discrepancy with NPLQCD

- Insufficient statistics; real plateau possibly not yet reached in our calculation.
- Different size of overlap with the ground state: the two calculations use different kinds of interpolating operators,

$$
\begin{aligned}
C_{\text {Mainz }}(t) & =\sum_{\vec{x}}\langle(q q q q q q)(\vec{x}, t)(\bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q})(\overrightarrow{0}, 0)\rangle, \\
C_{\text {NPLQCD }}(t) & =\sum_{\vec{x}, \vec{y}}\langle(q q q)(\vec{x}, t)(q q q)(\vec{y}, t)(\bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q})(\overrightarrow{0}, 0)\rangle .
\end{aligned}
$$

- Different analysis of two-point functions:
- We use a symmetric set-up and solve the GEVP; up to statistical fluctuations, the ground-state mass will be approached from above.
- NPLQCD uses asymmetric correlators and the matrix-Prony method; plateaus may be approached from below.
- We use a quenched strange quark.
- Our calculations lack a $L \rightarrow \infty$ extrapolation.

Summary

- Calculation done on two ensembles with $m_{\pi}=451 \mathrm{MeV}$ and 1 GeV .
- All-mode-averaging and timeslice-normalized smearing help to reduce noise.
- Present data do not show a bound H-dibaryon.
- Future plans:
- Increase statistics.
- Explore adding two-baryon operators to the basis of interpolators.

