Study of the couplings of QED and QCD from the Adler function

Gregorio Herdoíza

Johannes Gutenberg Universität Mainz and IFT, UAM/CSIC

with Anthony Francis, Hanno Horch, Benjamin Jäger, Harvey Meyer and Hartmut Wittig

Lattice 2014, Columbia U., June 27, 2014

[talk by Hanno Horch]

 $\sigma_{\mu}^{\rm HLO}$ is dominated by the low Q^2 region : noisy and long-distance contributions

$$\bar{\sigma}_{\mu}^{\text{HLO}}(\boldsymbol{Q}_{\text{ref}}^2) \equiv 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_{\boldsymbol{Q}_{\text{ref}}^2}^{\infty} d\boldsymbol{Q}^2 f\left(\boldsymbol{Q}^2, m_{\mu}^2\right) \left[\boldsymbol{\Pi}(\boldsymbol{Q}^2) - \boldsymbol{\Pi}(\boldsymbol{Q}_{\text{ref}}^2)\right] \xrightarrow{\boldsymbol{Q}_{\text{ref}}^2 \to 0} \boldsymbol{\sigma}_{\mu}^{\text{HLO}}$$

integrand is peaked at $Q^2 \sim m_{\mu}^2$

 $\bar{a}_{''}^{\text{HLO}}(Q_{\text{ref}}^2)$

 $m_\mu^2 \sim 0.01 \, {
m GeV}^2$

 \rightarrow here we will consider physical quantities sensitive to larger Q² regime

running of QED coupling

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\text{QED}}(Q^2)}$$

- ► vacuum polarisation: charge screening ~~ running of QED coupling
- Standard Model (SM) precision tests and sensitivity to new physics requires precise knowledge of $\Delta \alpha_{\text{QED}}(Q^2)$: input parameter of SM

•
$$\alpha = 1/137.035999074(44)$$
 [0.3 ppb] [PDG, 2013]
• $\alpha(M_Z^2) = 1/128.952(14)$ [10⁻⁴] $\rightarrow 10^5$ less accurate ...

- uncertainty in $\alpha(M_7^2)$ is significantly larger than that of M_Z
- hadronic effects: α(Q²) depends strongly on Q² at low energies hadronic uncertainties propagate ...

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\rm QED}(Q^2)}$$

leading order (LO) contribution

$$J_{\mu}(x) = \sum_{f=1}^{N_{\mathbf{f}}} Q_f \overline{\psi}_f(x) \gamma_{\mu} \psi_f(x)$$
$$Q_f \in \{-1/3, 2/3\}$$

• $\Pi(Q^2)$: photon vacuum polarisation function (VPF)

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\rm QED}(Q^2)}$$

leading order (LO) contribution

$$\int d^4 x \, e^{i \mathbf{Q} x} \, \langle J_\mu(x) \, J_\nu(0) \rangle \ = \ (\mathbf{Q}_\mu \, \mathbf{Q}_\nu - \mathbf{Q}^2 \, \delta_{\mu\nu}) \, \Pi(\mathbf{Q}^2)$$
$$J_\mu(x) \ = \ \sum_{f=1}^{N_f} \, \mathbf{Q}_f \, \overline{\psi}_f(x) \gamma_\mu \psi_f(x)$$
$$\mathbf{Q}_f \in \{-1/3, 2/3\}$$

• $\Pi(Q^2)$: photon vacuum polarisation function (VPF)

$$\Delta \alpha_{\text{QED}}(\boldsymbol{Q}^2) = 4\pi \alpha \, \left(\Pi(\boldsymbol{Q}^2) - \Pi(0) \right)$$

Adler function $D(Q^2)$: $\frac{D(Q^2)}{Q^2} = 12\pi^2 \frac{d \prod (q^2)}{dq^2}$ $= -\frac{3\pi}{\alpha} \frac{d}{dq^2} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2) \qquad \qquad Q^2 = -q^2$

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\text{QED}}(Q^2)}$$

Combine experimental data and perturbation theory (PT)

 \gtrsim [1%]

[F. Jegerlehner, 0807.4206]

• can lattice QCD reach similar precision for $\Delta \alpha_{\text{QED}}^{\text{had}}$?

lattice setup

[talk by Hanno Horch]

increased statistics

 $N_{\rm f} = 2 \ \mathcal{O}(a)$ improved Wilson fermions [CLS] strange and charm are quenched : $s_{\rm Q}$, $c_{\rm Q}$ only quark-connected contributions

Adler function : lattice spacing dependence

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

combined fits [talk by Hanno Horch] lattice artefacts : dominant systematic effect for $~Q^2\gtrsim 1~GeV^2$

Adler function : lattice spacing dependence

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

u, d

combined fits [talk by Hanno Horch]

lattice artefacts : dominant systematic effect for $~Q^2\gtrsim 1\,{\rm GeV}^2$

Adler function : light-quark mass dependence

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

	_
и, ч	-

Adler function : strange quark

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

SQ

lattice artefacts : dominant systematic effect for $Q^2\gtrsim 1\,{\rm GeV}^2$

Adler function : strange quark

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

lattice artefacts : dominant systematic effect for $\ensuremath{Q^2} \gtrsim 1 \, {\rm GeV^2}$

[PRELIMINARY]

SQ

Adler function : charm quark

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

CQ

lattice artefacts : dominant systematic effect for $Q^2\gtrsim 1\,{\rm GeV}^2$

Adler function : charm quark

$$D(Q^2) = \frac{3\pi}{\alpha} \frac{d}{d\log(q^2)} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2)$$

lattice artefacts : dominant systematic effect for $~Q^2\gtrsim 1\,{\rm GeV}^2$

[PRELIMINARY]

CQ

Adler function : flavour contributions

Adler function : flavour contributions

pheno. model u, d [D. Bernecker & H. Meyer, 1107.4388]

[pQCDAdler package, F. Jegerlehner]

running QED coupling: $\Delta lpha_{ m QED}^{ m had}(Q^2)$

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\text{QED}}(Q^2)}$$

 $\Delta \alpha_{\rm QED}^{\rm had}(Q^2) = 4\pi \alpha \, \left(\Pi(Q^2) - \Pi(0) \right)$

u, d u, d, s₉ u, d, s₉, c₉ u, d, s, c, b

running QED coupling: $\Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\text{QED}}(Q^2)}$$

u, d u, d, s_o u, d, s_o, c_o u, d, s, c, b

$$\Delta \alpha_{\rm QED}^{\rm had}({\sf Q}^2) = 4\pi \alpha \, \left({\sf \Pi}({\sf Q}^2) - {\sf \Pi}(0) \right)$$

[PRELIMINARY]

Δα^{had}_{QED}(1 GeV²) [10⁻³ units]
 u, d: 2.95(04)(05) [2%]
 u, d, s_Q: 3.36(04)(06) [2%]
 u, d, s_Q, c_Q: 3.50(05)(09) [3%]
 u, d, s, c, b: 3.64(04) [1%]
 Pheno. [alphaQED package, F. Jegerlehner]

- difference : $\Delta \alpha_{\text{QED}}^{\text{had}} (4 \text{ GeV}^2) \Delta \alpha_{\text{QED}}^{\text{had}} (1 \text{ GeV})$
 - u, d: 1.97(02)(06) [3%]
 - $u, d, s_Q: 2.33(02)(08)$ [3%]
 - u, d, s_Q, c_Q: 2.65(02)(15) [6%]

comparison to perturbative QCD

 α_{s}

Operator Product Expansion (OPE)

Matching of lattice determinations of the VPF and Adler function to perturbation theory

Non-singlet and singlet contributions

$$D^{(N_{\rm f})}(\hat{Q}^2,\alpha_s) = \sum_f Q_f^2 D_{\rm con}(\alpha_s,\hat{Q}^2,m_f) + \sum_{f,f'} Q_f Q_{f'} D_{\rm disc}(\alpha_s,\hat{Q}^2,m_f,m_{f'})$$

OPE

$$\begin{split} D_{\text{con}}^{\text{OPE}}(\hat{Q}^2, \alpha_s, m_f) &= & D_0(\alpha_s, \hat{Q}^2, \mu^2) \\ &+ & D_2^m(\alpha_s, \hat{Q}^2, \mu^2) \frac{\left(m_f[\hat{Q}^2]\right)^2}{\hat{Q}^2} \\ &+ & D_4^F(\alpha_s, \hat{Q}^2, \mu^2) \frac{m_f\langle \bar{\psi}_f \psi_f \rangle}{\hat{Q}^4} \\ &+ & D_4^G(\alpha_s, \hat{Q}^2, \mu^2) \frac{\langle O_{\text{OPE}}^{(4)} \rangle}{\hat{Q}^4} \\ &+ & \mathcal{O}\left(\frac{1}{\hat{Q}^6}\right) \end{split}$$

Operator Product Expansion (OPE)

- only quark-connected contributions both in PT and lattice
- Wilson coefficients D_0 , D_2^m , D_4^F , D_4^G are computed in PT

 $D_0: \mathcal{O}(\alpha_s^4), \qquad D_2^m: \mathcal{O}(\alpha_s^2), \qquad D_4^{\mathrm{F}}: \mathcal{O}(\alpha_s^2), \qquad D_4^{\mathrm{G}}: \mathcal{O}(\alpha_s)$

connection of $\alpha_{\rm S}$ to $\Lambda_{\overline{\rm MS}}^{(N_{\rm f}=2)}$ via the 4-loop β -function

▶ fit of lattice data to PT : range of validity of PT vs. discretisation effects

• fit parameters :
$$\alpha_s(\mu = 2 \text{ GeV}), \langle O_{\text{OPE}}^{(4)} \rangle$$

and 2 parameters for lattice artefacts

chiral condensate [$\overline{\text{MS}}$; $\mu = 2 \text{ GeV}$] from [FLAG. 1310.8555]

earlier lattice studies [JLQCD, 0807.0556, 1002.0371]

fit to PT: $a = \{0.05, 0.06, 0.08\}$ fm

ongoing studies of systematic effects : lattice artefacts, Q² interval,

order in OPE and perturbative expansions, ...

fit to PT : comparison

 $\Lambda_{\overline{MS}}^{(N_f=2)}$

u, d

conclusions

▶ ...

- Adler function \rightsquigarrow a_{μ}^{had} , $\Delta \alpha_{QED}^{had}(Q^2)$, α_s
- good prospects for accurate determination of $\Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$ on the lattice
- matching to perturbation theory : suffers both from statistical and systematic uncertainties

in view of future experimental results for a_{μ} ... or to address *e.g.* the $e^+e^- - \tau$ difference \rightarrow improve precision and accuracy

Combination of standard and "mixed representation" methods → a^{had}_µ
 [talk by Anthony Francis]
 quark-disconnected diagrams
 [talk by Vera Gülpers]
 variance reduction techniques
 [poster by Eigo Shintani]

Lattice VPF

Local current

$$J^{(1, f)}_{\mu}(x) = Z_V \,\overline{\psi}_f(x) \,\gamma_\mu \,\psi_f(x)$$

conserved-local correlator

$$a^{\delta} \Big\langle \sum_{f=1}^{N_{\mathbf{f}}} \left(\mathcal{Q}_{f} J_{\mu}^{(\mathbf{ps}, f)}(x) \right) \sum_{f'=1}^{N_{\mathbf{f}}} \left(\mathcal{Q}_{f'} J_{\nu}^{(\mathbf{l}, f')}(0) \right) \Big\rangle$$

$$\Pi_{\mu\nu}(\hat{Q}) = a^4 \sum_{x} e^{iQ(x+a\hat{\mu}/2)} \langle J^{(\mathrm{ps})}_{\mu}(x) J^{(\mathrm{l})}_{\nu}(0) \rangle \quad \rightsquigarrow \quad \Pi(\hat{Q}^2)$$

$$\hat{Q}_{\mu} = \frac{2}{a} \sin\left(\frac{aQ_{\mu}}{2}\right)$$

Adler function : combined fit

Adler function:

$$D(Q^2) = -12 \pi^2 Q^2 \frac{d\Pi(Q^2)}{dQ^2}$$

► fit form :

 $\mathcal{D}(Q^2) = \operatorname{Pad\acute{e}}(Q^2) \left[1 + \operatorname{discr.} + \operatorname{mass}\right] \,,$

$$D(Q^{2}) = Q^{2} \left(p_{0} + \frac{p_{1}}{\left(p_{2} + Q^{2}\right)^{2}} + \frac{p_{3}}{\left(p_{4} + Q^{2}\right)^{2}} \right) \times \left[1 + \left(d_{1} a^{n} + d_{2} (aQ)^{n}\right) + \left(\frac{c_{1}}{c_{2} + Q^{2}}\right) \left(M_{\text{PS}}^{2} - M_{\pi}^{2}\right) \right].$$

 $n = \{1, 2\}$

 \blacktriangleright u, d, s_q and c_q

Adler function : light-quark mass dependence

Adler function : light-quark mass dependence

