Current status of ε_{K} calculated on the lattice

Yong-Chull Jang and Weonjong Lee (SWME Collaboration)

Lattice Gauge Theory Research Center
Department of Physics and Astronomy
Seoul National University

Columbia University, New York, 06/23~28/2014
ε_{K} and $\hat{B}_{K}, V_{c b}$ ।

- Definition of ε_{K}

$$
\varepsilon_{K}=\frac{A\left[K_{L} \rightarrow(\pi \pi)_{I=0}\right]}{A\left[K_{S} \rightarrow(\pi \pi)_{I=0}\right]}
$$

- Relation between ε_{K} and \hat{B}_{K} in standard model.

$$
\begin{aligned}
\varepsilon_{K} & =\exp \left(i \phi_{\varepsilon}\right) \sin \left(\phi_{\varepsilon}\right) C_{\varepsilon} \operatorname{Im} \lambda_{t} X \hat{B}_{K}+\xi_{0}+\xi_{L D} \\
X & =\operatorname{Re} \lambda_{c}\left[\eta_{1} S_{0}\left(x_{c}\right)-\eta_{3} S_{0}\left(x_{c}, x_{t}\right)\right]-\operatorname{Re} \lambda_{t} \eta_{2} S_{0}\left(x_{t}\right) \\
\lambda_{i} & =V_{i s}^{*} V_{i d}, \quad x_{i}=m_{i}^{2} / M_{W}^{2}, \quad C_{\varepsilon}=\frac{G_{F}^{2} F_{K}^{2} m_{K} M_{W}^{2}}{6 \pi^{2} \Delta M_{K}} \\
\xi_{0} & =\exp \left(i \phi_{\varepsilon}\right) \sin \left(\phi_{\varepsilon}\right) \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \approx 7 \% \\
\xi_{L D} & =\text { Long Distance Effect } \approx 2 \% \quad \longrightarrow \text { we neglect it! }
\end{aligned}
$$

ε_{K} and $\hat{B}_{K}, V_{c b}$ II

- Inami-Lim functions:

$$
\begin{align*}
S_{0}\left(x_{t}\right) & =\frac{4 x_{t}-11 x_{t}^{2}+x_{t}^{3}}{4\left(1-x_{t}\right)^{2}}-\frac{3 x_{t}^{3} \ln \left(x_{t}\right)}{2\left(1-x_{t}\right)^{3}} \\
S_{0}\left(x_{c}, x_{t}\right) & =x_{c}\left[\ln \left(\frac{x_{t}}{x_{c}}\right)-\frac{3 x_{t}}{4\left(1-x_{t}\right)}-\frac{3 x_{t}^{2} \ln \left(x_{t}\right)}{4\left(1-x_{t}\right)^{2}}\right] \\
S_{0}\left(x_{c}\right) & =x_{c}
\end{align*}
$$

- Dominant contribution $(\approx 55 \%)$ comes with $\left|V_{c b}\right|^{4}$.

$$
\begin{aligned}
& \operatorname{Im} \lambda_{t} \cdot \operatorname{Re} \lambda_{t}=\bar{\eta} \lambda^{2}\left|V_{c b}\right|^{4}(1-\bar{\rho}) \\
& \operatorname{Re} \lambda_{c}=-\lambda\left(1-\frac{\lambda^{2}}{2}\right)+\mathcal{O}\left(\lambda^{5}\right) \\
& \operatorname{Re} \lambda_{t}=-\left(1-\frac{\lambda^{2}}{2}\right) A^{2} \lambda^{5}(1-\bar{\rho})+\mathcal{O}\left(\lambda^{7}\right)
\end{aligned}
$$

ε_{K} and $\hat{B}_{K}, V_{c b}$ III

$$
\operatorname{Im} \lambda_{t}=\eta A^{2} \lambda^{5}+\mathcal{O}\left(\lambda^{7}\right)
$$

- Definition of B_{K} in standard model.

$$
\begin{aligned}
& B_{K}=\frac{\left\langle\bar{K}_{0}\right|\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left|K_{0}\right\rangle}{\frac{8}{3}\left\langle\bar{K}_{0}\right| \bar{s} \gamma_{\mu} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} d\left|K_{0}\right\rangle} \\
& \hat{B}_{K}=C(\mu) B_{K}(\mu), \quad C(\mu)=\alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2 b_{0}}}\left[1+\alpha_{s}(\mu) J_{3}\right]
\end{aligned}
$$

- Experiment:

$$
\begin{aligned}
\varepsilon_{K} & =(2.228 \pm 0.011) \times 10^{-3} \times e^{i \phi_{\varepsilon}} \\
\phi_{\varepsilon} & =43.52(5)^{\circ}
\end{aligned}
$$

Wolfenstein Parameters

Input Parameters for Angle-Only-Fit (AOF)

- $\epsilon_{K}, \hat{B}_{K}$, and $\left|V_{c b}\right|$ are used as inputs to determine the UT angles in the global fit of UTfit and CKMfitter.
- Instead, we can use angle-only-fit result for the UT apex $(\bar{\rho}, \bar{\eta})$.
- Then, we can take λ independently from

$$
\left|V_{u s}\right|=\lambda+\mathcal{O}\left(\lambda^{7}\right),
$$

which comes from $K_{l 3}$ and $K_{\mu 2}$.

	$0.22535(65)$	[1] CKMfitter
λ	$0.22535(65)$	[1] UTfit
	$0.2252(9)$	$[1]\left\|V_{u s}\right\|$ (AOF)
	$0.131_{-0.013}^{+0.026}$	[1] CKMfitter
$\bar{\rho}$	$0.136(18)$	[1] UTfit
	$0.130(27)$	[2] UTfit (AOF)
	$0.345_{-0.014}^{+0.013}$	[1] CKMfitter
	$0.348(14)$	$[1]$ UTfit
	$0.338(16)$	[2] UTfit (AOF)

- Use $\left|V_{c b}\right|$ instead of A.

$$
\left|V_{c b}\right|=A \lambda^{2}+\mathcal{O}\left(\lambda^{7}\right)
$$

Input Parameters of $B_{K}, V_{c b}$ and others

B_{K}

\hat{B}_{K}	$0.7661(99)$	[3] Lat Avg
	$0.7379(47)(365)$	[4] SWME

$V_{c b} \times 10^{-3}$	42.42(86)	[1] Incl.
	39.04(49)(53)(19)	[5] Excl.

Others

G_{F}	$1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}$	$[1]$
M_{W}	$80.385(15) \mathrm{GeV}$	$[1]$
$m_{c}\left(m_{c}\right)$	$1.275(25) \mathrm{GeV}$	$[1]$
$m_{t}\left(m_{t}\right)$	$163.3(2.7) \mathrm{GeV}$	$[6]$
η_{1}	$1.43(23)$	$[7]$
η_{2}	$0.5765(65)$	$[7]$
η_{3}	$0.496(47)$	$[8]$
θ	$43.52(5)^{\circ}$	$[1]$
$m_{K^{0}}$	$497.614(24) \mathrm{MeV}$	$[1]$
ΔM_{K}	$3.484(6) \times 10^{-12} \mathrm{MeV}$	$[1]$
F_{K}	$156.1(8) \mathrm{MeV}$	$[1]$

$$
\xi_{0}=\frac{\operatorname{Re} A_{0}}{\operatorname{Im} A_{0}}
$$

ξ_{0}	$-1.63(19)(20) \times 10^{-4}$	$[9]$

- RBC-UKQCD collaboration performs lattice calculation of $\operatorname{Im} A_{2}$. From this result, ξ_{0} can be obtained by the relation

$$
\operatorname{Re}\left(\frac{\epsilon_{K}^{\prime}}{\epsilon_{K}}\right)=\frac{1}{\sqrt{2}\left|\epsilon_{K}\right|} \omega\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\xi_{0}\right) .
$$

Other inputs ω, ϵ_{K} and $\epsilon_{K}^{\prime} / \epsilon_{K}$ are taken from the experimental values.

- Here, we choose an approximation of $\cos \left(\phi_{\epsilon^{\prime}}-\phi_{\epsilon}\right) \approx 1$.
- $\phi_{\epsilon}=43.52(5), \phi_{\epsilon^{\prime}}=42.3(1.5)$
ϵ_{K} : Lat. Avg. $\hat{B}_{K}, \operatorname{AOF}$ of $(\bar{\rho}, \bar{\eta}), V_{u s}$

Figure: Inclusive $V_{c b}$

Figure: Exclusive $V_{c b}$

- With exclusive $V_{c b}$, it shows 3.3σ tension.

$$
\begin{gathered}
\epsilon_{K}^{E x p}=2.228(11) \times 10^{-3} \\
\epsilon_{K}^{S M}=1.636(182) \times 10^{-3}
\end{gathered}
$$

$\epsilon_{K}:$ SWME $\hat{B}_{K}, \operatorname{AOF}$ of $(\bar{\rho}, \bar{\eta}), V_{u s}$

Figure: Inclusive $V_{c b}$

Figure: Exclusive $V_{c b}$

- With exclusive $V_{c b}$, it shows 3.4σ tension.

$$
\begin{gathered}
\epsilon_{K}^{E x p}=2.228(11) \times 10^{-3} \\
\epsilon_{K}^{S M}=1.570(195) \times 10^{-3}
\end{gathered}
$$

$\epsilon_{K}:$ SWME $\hat{B}_{K}, \operatorname{CKMfitter}(\bar{\rho}, \bar{\eta}, \lambda)$

Figure: Inclusive $V_{c b}$

Figure: Exclusive $V_{c b}$

- With exclusive $V_{c b}$, it shows 3.2σ tension.

$$
\begin{gathered}
\epsilon_{K}^{E x p}=2.228(11) \times 10^{-3} \\
\epsilon_{K}^{S M}=1.607(193) \times 10^{-3}
\end{gathered}
$$

$\epsilon_{K}:$ SWME \hat{B}_{K}, UTfit $(\bar{\rho}, \bar{\eta}, \lambda)$

Figure: Inclusive $V_{c b}$

Figure: Exclusive $V_{c b}$

- With exclusive $V_{c b}$, it shows 3.2σ tension.

$$
\begin{gathered}
\epsilon_{K}^{E x p}=2.228(11) \times 10^{-3} \\
\epsilon_{K}^{S M}=1.615(192) \times 10^{-3}
\end{gathered}
$$

Current Status of ε_{K}

- SWME 2014: (in units of 1.0×10^{-3}, AOF)

$$
\begin{array}{ll}
\varepsilon_{K}=1.57 \pm 0.19 & \text { for Exclusive } V_{c b} \text { (Lattice QCD) } \\
\varepsilon_{K}=2.14 \pm 0.26 & \text { for Inclusive } V_{c b} \text { (QCD Sum Rule) }
\end{array}
$$

- Experiments:

$$
\varepsilon_{K}=2.228 \pm 0.011
$$

- Hence, we observe 3.4(3) σ difference between the SM theory (Lattice QCD) and experiments.
- What does this mean? \longrightarrow Breakdown of SM ?

Error Budget of Exclusive ε_{K}

cause	error (\%)	memo
$V_{c b}$	33.7	Exclusive (FNAL/MILC)
B_{K}	19.7	SWME
$\bar{\eta}$	17.6	Wolfenstein parameter
η_{3}	13.8	$\eta_{c t}$
η_{1}	4.1	$\eta_{c c}$
$\bar{\rho}$	3.7	Wolfenstein parameter
ξ_{0}	1.9	$\operatorname{Im}\left(A_{0}\right) / \operatorname{Re}\left(A_{0}\right)$
m_{c}	0.8	Charm quark mass
\vdots	\vdots	\vdots

Conclusion and Future Outlook

(1) Lattice determination of ε_{K} from the standard model with the exclusive $V_{c b}$ channel shows 3.4(3) σ tension compared with the experiment.
(2) However, in the inclusive $V_{c b}$ channel determined from the QCD sum rules, we do not observe the same kind of tension.
(3) The dominant systematic error in ε_{K} comes from $V_{c b}$ in the exclusive channel.
(9) Hence, it is very crucial to reduce the theoretical error of $V_{c b}$ down to the $\leq 0.5 \%$ level: \rightarrow the OK action.
© Thank God very much for your help!!!

References for the Input Parameters I

[1] J. Beringer et al.
Review of Particle Physics (RPP).
Phys.Rev., D86:010001, 2012.
[2] A. Bevan, M. Bona, M. Ciuchini, D. Derkach, E. Franco, et al.
Standard Model updates and new physics analysis with the Unitarity Triangle fit.
Nucl.Phys.Proc.Suppl., 241-242:89-94, 2013.
[3] Sinya Aoki, Yasumichi Aoki, Claude Bernard, Tom Blum, Gilberto Colangelo, et al.
Review of lattice results concerning low energy particle physics.
2013.
[4] Taegil Bae et al.
Improved determination of B_{K} with staggered quarks.
Phys.Rev., D89:074504, 2014.
[5] Jon A. Bailey, A. Bazavov, C. Bernard, C.M. Bouchard, C. DeTar, et al.
Update of $\left|V_{c b}\right|$ from the $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ form factor at zero recoil with three-flavor lattice QCD.
2014.

References for the Input Parameters II

[6] S. Alekhin, A. Djouadi, and S. Moch.
The top quark and Higgs boson masses and the stability of the electroweak vacuum.
Phys.Lett., B716:214-219, 2012.
[7] Andrzej J. Buras and Diego Guadagnoli.
Phys.Rev., D78:033005, 2008.
[8] Joachim Brod and Martin Gorbahn.
ϵ_{K} at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution.
Phys.Rev., D82:094026, 2010.
[9] T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, et al.
Phys.Rev.Lett., 108:141601, 2012.

