Current status of ε_K calculated on the lattice

Yong-Chull Jang and Weonjong Lee (SWME Collaboration)

Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

Columbia University, New York, 06/23~28/2014

ε_K and \hat{B}_K , V_{cb} I

• Definition of ε_K

$$\varepsilon_K = \frac{A[K_L \to (\pi\pi)_{I=0}]}{A[K_S \to (\pi\pi)_{I=0}]}$$

• Relation between ε_K and \hat{B}_K in standard model.

$$\begin{split} \varepsilon_{K} &= \exp(i\phi_{\varepsilon}) \, \sin(\phi_{\varepsilon}) \, C_{\varepsilon} \, \operatorname{Im}\lambda_{t} \, X \, \hat{B}_{K} + \xi_{0} + \xi_{LD} \\ X &= \operatorname{Re}\lambda_{c}[\eta_{1}S_{0}(x_{c}) - \eta_{3}S_{0}(x_{c}, x_{t})] - \operatorname{Re}\lambda_{t}\eta_{2}S_{0}(x_{t}) \\ \lambda_{i} &= V_{is}^{*}V_{id}, \qquad x_{i} = m_{i}^{2}/M_{W}^{2}, \qquad C_{\varepsilon} = \frac{G_{F}^{2}F_{K}^{2}m_{K}M_{W}^{2}}{6\pi^{2}\Delta M_{K}} \\ \xi_{0} &= \exp(i\phi_{\varepsilon})\sin(\phi_{\varepsilon})\frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}} \approx 7\% \\ \xi_{LD} &= \operatorname{Long} \, \operatorname{Distance} \, \operatorname{Effect} \approx 2\% \quad \longrightarrow \text{ we neglect it!} \end{split}$$

$arepsilon_K$ and \hat{B}_K , V_{cb} []

• Inami-Lim functions:

$$S_0(x_t) = \frac{4x_t - 11x_t^2 + x_t^3}{4(1 - x_t)^2} - \frac{3x_t^3 \ln(x_t)}{2(1 - x_t)^3} \longrightarrow 55\%$$

$$S_0(x_c, x_t) = x_c \left[\ln(\frac{x_t}{x_c}) - \frac{3x_t}{4(1 - x_t)} - \frac{3x_t^2 \ln(x_t)}{4(1 - x_t)^2} \right] \longrightarrow 34\%$$

$$S_0(x_c) = x_c \longrightarrow 11\%$$

• Dominant contribution (\approx 55%) comes with $|V_{cb}|^4$.

$$Im\lambda_t \cdot Re\lambda_t = \bar{\eta}\lambda^2 |V_{cb}|^4 (1-\bar{\rho})$$
$$Re\lambda_c = -\lambda(1-\frac{\lambda^2}{2}) + \mathcal{O}(\lambda^5)$$
$$Re\lambda_t = -(1-\frac{\lambda^2}{2})A^2\lambda^5(1-\bar{\rho}) + \mathcal{O}(\lambda^7)$$

Yong-Chull Jang and Weonjong Lee (SWME

• • • • • • • • • • • •

 $arepsilon_K$ and \hat{B}_K , V_{cb} []]

$$\mathrm{Im}\lambda_t = \eta A^2 \lambda^5 + \mathcal{O}(\lambda^7)$$

• Definition of B_K in standard model.

$$B_{K} = \frac{\langle \bar{K}_{0} | [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] | K_{0} \rangle}{\frac{8}{3} \langle \bar{K}_{0} | \bar{s}\gamma_{\mu}\gamma_{5}d | 0 \rangle \langle 0 | \bar{s}\gamma_{\mu}\gamma_{5}d | K_{0} \rangle}$$
$$\hat{B}_{K} = C(\mu)B_{K}(\mu), \qquad C(\mu) = \alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2b_{0}}} [1+\alpha_{s}(\mu)J_{3}]$$

• Experiment:

$$\varepsilon_K = (2.228 \pm 0.011) \times 10^{-3} \times e^{i\phi_{\varepsilon}}$$

$$\phi_{\varepsilon} = 43.52(5)^{\circ}$$

イロト イヨト イヨト イヨト

 ε_{K}

Wolfenstein Parameters

Input Parameters for Angle-Only-Fit (AOF)

- ϵ_K , \hat{B}_K , and $|V_{cb}|$ are used as inputs to determine the UT angles in the global fit of UTfit and CKMfitter.
- Instead, we can use angle-only-fit result for the UT apex (ρ̄, η̄).
- Then, we can take λ independently from

 $|V_{us}| = \lambda + \mathcal{O}(\lambda^7),$

which comes from K_{l3} and $K_{\mu 2}$.

• Use $|V_{cb}|$ instead of A.

$$|V_{cb}| = A\lambda^2 + \mathcal{O}(\lambda^7)$$

λ	0.22535(65)	 CKMfitter
	0.22535(65)	[1] UTfit
	0.2252(9)	[1] $ V_{us} $ (AOF)
$\bar{\rho}$	$0.131^{+0.026}_{-0.013}$	[1] CKMfitter
	0.136(18)	[1] UTfit
	0.130(27)	[2] UTfit (AOF)
$\bar{\eta}$	$0.345\substack{+0.013\\-0.014}$	[1] CKMfitter
	0.348(14)	[1] UTfit
	0.338(16)	[2] UTfit (AOF)

Input Parameters of B_K , V_{cb} and others

B_K

\hat{B}_K	0.7661(99)	[3] Lat Avg
	0.7379(47)(365)	[4] SWME

V_{cb}

$V_{\odot} \times 10^{-3}$	42.42(86)	[1] Incl.
V _{cb} ×10	39.04(49)(53)(19)	[5] Excl.

Others

G_F	$1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$	[1]
M_W	80.385(15) GeV	[1]
$m_c(m_c)$	1.275(25) GeV	[1]
$m_t(m_t)$	163.3(2.7) GeV	[6]
η_1	1.43(23)	[7]
η_2	0.5765(65)	[7]
η_3	0.496(47)	[8]
θ	$43.52(5)^{\circ}$	[1]
m_{K^0}	497.614(24) MeV	[1]
ΔM_K	$3.484(6) \times 10^{-12} \text{ MeV}$	[1]
F_K	156.1(8) MeV	[1]
-		

イロト イヨト イヨト イヨト

$\xi_0 \\ {\rm Input \ Parameters}$

$$\xi_0 = \frac{\text{Re}A_0}{\text{Im}A_0}$$

$$\xi_0 = \frac{1.63(19)(20) \times 10^{-4}}{\text{Im}A_0}$$

 RBC-UKQCD collaboration performs lattice calculation of ImA₂. From this result, ξ₀ can be obtained by the relation

$$\operatorname{Re}\left(\frac{\epsilon'_{K}}{\epsilon_{K}}\right) = \frac{1}{\sqrt{2}|\epsilon_{K}|} \omega \left(\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \xi_{0}\right).$$

Other inputs ω , ϵ_K and ϵ'_K/ϵ_K are taken from the experimental values.

• Here, we choose an approximation of $\cos(\phi_{\epsilon'} - \phi_{\epsilon}) \approx 1$.

•
$$\phi_{\epsilon} = 43.52(5), \ \phi_{\epsilon'} = 42.3(1.5)$$

E Sac

イロト イポト イヨト イヨト

ϵ_K : Lat. Avg. \hat{B}_K , AOF of $(\bar{ ho}, \bar{\eta})$, V_{us}

 ε_{K}

Figure: Inclusive V_{cb}

Figure: Exclusive V_{cb}

• With exclusive V_{cb} , it shows 3.3σ tension.

$$\begin{aligned} \epsilon_K^{Exp} &= 2.228(11) \times 10^{-3} \\ \epsilon_K^{SM} &= 1.636(182) \times 10^{-3} \end{aligned}$$

Yong-Chull Jang and Weonjong Lee (SWME

ϵ_K : SWME \hat{B}_K , AOF of $(\bar{ ho}, \bar{\eta})$, V_{us}

 ε_{K}

Figure: Inclusive V_{cb}

Figure: Exclusive V_{cb}

• With exclusive V_{cb} , it shows 3.4σ tension.

$$\begin{aligned} \epsilon_K^{Exp} &= 2.228(11) \times 10^{-3} \\ \epsilon_K^{SM} &= 1.570(195) \times 10^{-3} \end{aligned}$$

Yong-Chull Jang and Weonjong Lee (SWME

ϵ_K : SWME \hat{B}_K , CKMfitter $(\bar{\rho}, \bar{\eta}, \lambda)$

 ε_{K}

Figure: Inclusive V_{cb}

Figure: Exclusive V_{cb}

• With exclusive V_{cb} , it shows 3.2σ tension.

$$\begin{aligned} \epsilon_K^{Exp} &= 2.228(11) \times 10^{-3} \\ \epsilon_K^{SM} &= 1.607(193) \times 10^{-3} \end{aligned}$$

Yong-Chull Jang and Weonjong Lee (SWME

ϵ_K : SWME \hat{B}_K , UTfit $(ar{ ho},ar{\eta},\lambda)$

 ε_{K}

Figure: Inclusive V_{cb}

Figure: Exclusive V_{cb}

• With exclusive V_{cb} , it shows 3.2σ tension.

$$\begin{aligned} \epsilon_K^{Exp} &= 2.228(11) \times 10^{-3} \\ \epsilon_K^{SM} &= 1.615(192) \times 10^{-3} \end{aligned}$$

Yong-Chull Jang and Weonjong Lee (SWME

Current Status of ε_K

• SWME 2014: (in units of 1.0×10^{-3} , AOF)

$\varepsilon_K = 1.57 \pm 0.19$	for Exclusive V_{cb} (Lattice QCD)
$\varepsilon_K = 2.14 \pm 0.26$	for Inclusive V_{cb} (QCD Sum Rule)

• Experiments:

$$\varepsilon_K = 2.228 \pm 0.011$$

- Hence, we observe 3.4(3) σ difference between the SM theory (Lattice QCD) and experiments.
- What does this mean? \longrightarrow Breakdown of SM ?

Error Budget of Exclusive ε_K

cause	error (%)	memo
V_{cb}	33.7	Exclusive (FNAL/MILC)
B_K	19.7	SWME
$ar\eta$	17.6	Wolfenstein parameter
η_3	13.8	η_{ct}
η_1	4.1	η_{cc}
$ar{ ho}$	3.7	Wolfenstein parameter
ξ_0	1.9	$Im(A_0)/Re(A_0)$
m_c	0.8	Charm quark mass
:	:	÷

<ロ> (日) (日) (日) (日) (日)

Conclusion and Future Outlook

- Lattice determination of ε_K from the standard model with the exclusive V_{cb} channel shows 3.4(3) σ tension compared with the experiment.
- **2** However, in the inclusive V_{cb} channel determined from the QCD sum rules, we do not observe the same kind of tension.
- **③** The dominant systematic error in ε_K comes from V_{cb} in the exclusive channel.
- Hence, it is very crucial to reduce the theoretical error of V_{cb} down to the $\leq 0.5\%$ level: → the OK action.
- S Thank God very much for your help!!!

References for the Input Parameters I

 J. Beringer et al. Review of Particle Physics (RPP). *Phys.Rev.*, D86:010001, 2012.

- [2] A. Bevan, M. Bona, M. Ciuchini, D. Derkach, E. Franco, et al. Standard Model updates and new physics analysis with the Unitarity Triangle fit. *Nucl.Phys.Proc.Suppl.*, 241-242:89–94, 2013.
- [3] Sinya Aoki, Yasumichi Aoki, Claude Bernard, Tom Blum, Gilberto Colangelo, et al. Review of lattice results concerning low energy particle physics. 2013.
- [4] Taegil Bae et al. Improved determination of B_K with staggered quarks. *Phys. Rev.*, D89:074504, 2014.
- [5] Jon A. Bailey, A. Bazavov, C. Bernard, C.M. Bouchard, C. DeTar, et al. Update of $|V_{cb}|$ from the $\bar{B} \rightarrow D^* \ell \bar{\nu}$ form factor at zero recoil with three-flavor lattice QCD. 2014.

(日) (周) (三) (三)

References for the Input Parameters II

[6] S. Alekhin, A. Djouadi, and S. Moch.

The top quark and Higgs boson masses and the stability of the electroweak vacuum. *Phys.Lett.*, B716:214–219, 2012.

- [7] Andrzej J. Buras and Diego Guadagnoli. *Phys. Rev.*, D78:033005, 2008.
- [8] Joachim Brod and Martin Gorbahn. ϵ_K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution. *Phys.Rev.*, D82:094026, 2010.
- [9] T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, et al. *Phys.Rev.Lett.*, 108:141601, 2012.

(日) (同) (三) (三)