The $\Lambda(1405)$ is an anti-kaon–nucleon molecule

Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- Even though it contains a heavy strange quark and has odd parity its mass is lower than any other excited spin-1/2 baryon.
- It has a mass of 1405.1^{+1.3}_{-1.0} MeV.
 - \circ This is lower than the lowest odd-parity nucleon state (N(1535)), even though it has a valence strange quark.

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- Even though it contains a heavy strange quark and has odd parity its mass is lower than any other excited spin-1/2 baryon.
- It has a mass of 1405.1^{+1.3}_{-1.0} MeV.
 - This is lower than the lowest odd-parity nucleon state (N(1535)), even though it has a valence strange quark.
- Before the existence of quarks was confirmed, Dalitz and co-workers speculated that it might be a molecular state of an anti-kaon bound to a nucleon.

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- Even though it contains a heavy strange quark and has odd parity its mass is lower than any other excited spin-1/2 baryon.
- It has a mass of 1405.1^{+1.3}_{-1.0} MeV.
 - This is lower than the lowest odd-parity nucleon state (N(1535)), even though it has a valence strange quark.
- Before the existence of quarks was confirmed, Dalitz and co-workers speculated that it might be a molecular state of an anti-kaon bound to a nucleon.
- For almost 50 years the structure of the $\Lambda(1405)$ resonance has been a subject of debate.

- Here we'll see how a new lattice QCD simulation showing
 - \circ The $\Lambda(1405)$ strange magnetic form factor vanishes, together with
 - A Hamiltonian effective field theory analysis of the lattice QCD energy levels,

unambiguously establishes that the structure is dominated by a bound anti-kaon–nucleon component.

• It provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.

- It provides direct insight into the possible dominance of a molecular KN bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.

- It provides direct insight into the possible dominance of a molecular KN bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - o A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

- It provides direct insight into the possible dominance of a molecular KN bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - o A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

- It provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - o A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - o A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is in a $\overline{K}N$ molecule.

Outline

Techniques for exciting the $\Lambda(1405)$ in Lattice QCD

Quark-sector contributions to the electric form factor of the $\Lambda(1405)$

Quark-sector contributions to the magnetic form factor of the $\Lambda(1405)$

Hamiltonian effective field theory model: m_0 , $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.

Conclusion

The $\Lambda(1405)$ and Lattice QCD

Our recent work has successfully isolated three low-lying odd-parity spin-1/2 states.

B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

- An extrapolation of the trend of the lowest state reproduces the mass of the $\Lambda(1405)$.
- Subsequent studies have confirmed these results.

G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)

$\Lambda(1405)$ and Baryon Octet dominated states

We are using the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

• Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.

We are using the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.

We are using the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.
- Single strange quark mass, with $\kappa_s = 0.13640$.
 - $\circ~$ We use $\kappa_{\rm s}=0.13665$ for the valence strange quarks to reproduce the physical kaon mass.

We are using the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.
- Single strange quark mass, with $\kappa_s = 0.13640$.
 - \circ We use $\kappa_{\rm s}=0.13665$ for the valence strange quarks to reproduce the physical kaon mass.
- The strange quark κ_s is held fixed as the light quark masses vary.
 - $\circ\,$ Changes in the strange quark contributions are environmental effects.

The $\Lambda(1405)$ and Lattice QCD

The variational analysis is necessary to isolate the $\Lambda(1405)$.

Variational Analysis

By using multiple operators, we can isolate and analyse individual energy eigenstates:

Construct the correlation matrix

$$G_{ij}(\mathbf{p};t) = \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}} \operatorname{tr}\left(\left.\Gamma\right.\left\langle\Omega\right|\chi_{i}(x)\,\overline{\chi}_{j}(0)\left|\Omega\right\rangle\right),$$

for some set $\{\chi_i\}$ operators that couple to the states of interest.

Variational Analysis

By using multiple operators, we can isolate and analyse individual energy eigenstates:

• Construct the correlation matrix

$$G_{ij}(\mathbf{p};t) = \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}}\,\mathrm{tr}\,(\,\Gamma\,\left\langle\Omega\right|\chi_i(x)\,\overline{\chi}_j(0)\left|\Omega\right\rangle)\,,$$

for some set $\{\chi_i\}$ operators that couple to the states of interest.

• We seek the linear combinations of the operators $\{\chi_i\}$ that perfectly isolate individual energy eigenstates, α , at momentum \mathbf{p} :

$$\phi^{\alpha} = v_i^{\alpha}(\mathbf{p}) \chi_i, \qquad \overline{\phi}^{\alpha} = u_i^{\alpha}(\mathbf{p}) \overline{\chi}_i.$$

• When successful, only state α participates in the correlation function, and one can write recurrence relations

$$G(\mathbf{p}; t + \delta t) \mathbf{u}^{\alpha}(\mathbf{p}) = e^{-E_{\alpha}(\mathbf{p}) \delta t} G(\mathbf{p}; t) \mathbf{u}^{\alpha}(\mathbf{p})$$

$$\mathbf{v}^{lpha\mathsf{T}}(\mathbf{p}) \ G(\mathbf{p}; t + \delta t) = \mathrm{e}^{-\mathcal{E}_{lpha}(\mathbf{p}) \, \delta t} \, \mathbf{v}^{lpha\mathsf{T}}(\mathbf{p}) \ G(\mathbf{p}; t)$$

Variational Analysis

• When successful, only state α participates in the correlation function, and one can write recurrence relations

$$G(\mathbf{p}; t + \delta t) \mathbf{u}^{\alpha}(\mathbf{p}) = e^{-E_{\alpha}(\mathbf{p}) \delta t} G(\mathbf{p}; t) \mathbf{u}^{\alpha}(\mathbf{p})$$

$$\mathbf{v}^{lpha\mathsf{T}}(\mathbf{p})\ G(\mathbf{p};t+\delta t) = \mathrm{e}^{-E_{lpha}(\mathbf{p})\,\delta t}\ \mathbf{v}^{lpha\mathsf{T}}(\mathbf{p})\ G(\mathbf{p};t)$$

• Solve for the left, $\mathbf{v}^{\alpha}(\mathbf{p})$, and right, $\mathbf{u}^{\alpha}(\mathbf{p})$, generalised eigenvectors of $G(\mathbf{p}; t + \delta t)$ and $G(\mathbf{p}; t)$:

Eigenstate-Projected Correlation Functions

 Using these optimal operators, eigenstate-projected correlation functions are obtained

$$G^{\alpha}(\mathbf{p};t) = \sum_{\mathbf{x}} e^{-i\,\mathbf{p}\cdot\mathbf{x}} \langle \Omega | \phi^{\alpha}(\mathbf{x}) \,\overline{\phi}^{\alpha}(0) | \Omega \rangle$$

$$= \sum_{\mathbf{x}} e^{-i\,\mathbf{p}\cdot\mathbf{x}} \langle \Omega | v_{i}^{\alpha}(\mathbf{p}) \,\chi_{i}(\mathbf{x}) \,\overline{\chi}_{j}(0) \,u_{j}^{\alpha}(\mathbf{p}) | \Omega \rangle$$

$$= \mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) \,G(\mathbf{p};t) \,\mathbf{u}^{\alpha}(\mathbf{p})$$

The importance of eigenstate isolation (red)

Probing with the electromagnetic current

Only the projected correlator has acceptable χ^2/dof

We consider local three-quark operators with the correct quantum numbers for the Λ channel, including

Flavour-octet operators

$$\chi_{1}^{8} = \frac{1}{\sqrt{6}} \varepsilon^{abc} \left(2(u^{a}C\gamma_{5}d^{b})s^{c} + (u^{a}C\gamma_{5}s^{b})d^{c} - (d^{a}C\gamma_{5}s^{b})u^{c} \right)$$

$$\chi_{2}^{8} = \frac{1}{\sqrt{6}} \varepsilon^{abc} \left(2(u^{a}Cd^{b})\gamma_{5}s^{c} + (u^{a}Cs^{b})\gamma_{5}d^{c} - (d^{a}Cs^{b})\gamma_{5}u^{c} \right)$$

Flavour-singlet operator

$$\chi^{1} = 2\varepsilon^{abc} \left((u^{a}C\gamma_{5}d^{b})s^{c} - (u^{a}C\gamma_{5}s^{b})d^{c} + (d^{a}C\gamma_{5}s^{b})u^{c} \right)$$

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
 - \circ Gives a 6 \times 6 matrix.

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
 - \circ Gives a 6×6 matrix.
- Also considered 35 and 100 sweeps.
 - Results are consistent with larger statistical uncertainties.

Extracting Form Factors from Lattice QCD

• To extract the form factors for a state α , we need to calculate the three-point correlation function

$$G^{\mu}_{\alpha}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) = \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_{2}} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_{1}} \langle \Omega | \phi^{\alpha}(x_{2}) j^{\mu}(x_{1}) \, \overline{\phi}^{\alpha}(0) | \Omega \rangle$$

Extracting Form Factors from Lattice QCD

 \bullet To extract the form factors for a state $\alpha,$ we need to calculate the three-point correlation function

$$G^{\mu}_{\alpha}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) = \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_{2}} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_{1}} \langle \Omega | \phi^{\alpha}(x_{2}) j^{\mu}(x_{1}) \, \overline{\phi}^{\alpha}(0) | \Omega \rangle$$

This takes the form

$$e^{-E_{\alpha}(\mathbf{p}')(t_2-t_1)}e^{-E_{\alpha}(\mathbf{p})t_1}\sum_{s,\,s'}\left\langle\Omega|\phi^{\alpha}|p',\,s'\right\rangle\left\langle p',\,s'|j^{\mu}|p,\,s\right\rangle\left\langle p,\,s|\overline{\phi}^{\alpha}|\Omega\right\rangle$$

Extracting Form Factors from Lattice QCD

 \bullet To extract the form factors for a state $\alpha,$ we need to calculate the three-point correlation function

$$G^{\mu}_{\alpha}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) = \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_{2}} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_{1}} \langle \Omega | \phi^{\alpha}(x_{2}) j^{\mu}(x_{1}) \, \overline{\phi}^{\alpha}(0) | \Omega \rangle$$

This takes the form

$$\mathrm{e}^{-\mathsf{E}_{\alpha}(\mathbf{p}')(t_2-t_1)}\mathrm{e}^{-\mathsf{E}_{\alpha}(\mathbf{p})t_1}\sum_{s,\,s'}\left\langle\Omega|\phi^{\alpha}|p',\,s'\right\rangle\left\langle p',\,s'|j^{\mu}|p,\,s\right\rangle\left\langle p,\,s|\overline{\phi}^{\alpha}|\Omega\right\rangle$$

• $\langle p', s'|j^{\mu}|p, s \rangle$ encodes the form factors of the interaction.

Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s'|j^{\mu}|p, s\rangle = \left(\frac{m_{\alpha}^2}{E_{\alpha}(\mathbf{p})E_{\alpha}(\mathbf{p}')}\right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_1(q^2)\gamma^{\mu} + \mathrm{i} F_2(q^2)\sigma^{\mu\nu}\frac{q^{\nu}}{2m_{\alpha}}\right) u(\mathbf{p})$$

Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s' | j^{\mu} | p, s \rangle = \left(\frac{m_{\alpha}^2}{E_{\alpha}(\mathbf{p}) E_{\alpha}(\mathbf{p}')} \right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_1(q^2) \gamma^{\mu} + i F_2(q^2) \sigma^{\mu\nu} \frac{q^{\nu}}{2m_{\alpha}} \right) u(\mathbf{p})$$

 The Dirac and Pauli form factors are related to the Sachs form factors through

$$\mathcal{G}_{\mathsf{E}}(q^2) = F_1(q^2) - rac{q^2}{(2m^{lpha})^2} F_2(q^2) \ \mathcal{G}_{\mathsf{M}}(q^2) = F_1(q^2) + F_2(q^2)$$

Current Matrix Elements for Spin-1/2 Baryons

The light- and strange-quark sector contributions can be isolated.

- Eg. The strange sector is isolated by setting $q_u = q_d = 0$.
- q_s is set to unity such that we report results for single quarks of unit charge.
- Symmetry in the *u-d* sector provides $\mathcal{G}^u(Q^2) = \mathcal{G}^d(Q^2) \equiv \mathcal{G}^\ell(Q^2)$ for $q_u = q_d = 1$.

\mathcal{G}_{E} for the $\Lambda(1405)$ at $Q^2 \sim 0.16\,\mathsf{GeV}^2$

- SU(3)-flavour symmetry is manifest for $m_{\ell} \sim m_s$. All three quark flavours play a similar role.
- $\mathcal{G}_M^\ell \equiv \mathcal{G}_M^u \equiv \mathcal{G}_M^d \simeq \mathcal{G}_M^s$ for the heaviest three masses.

- The internal structure of the $\Lambda(1405)$ reorganises at the lightest quark mass.
- The strange quark contribution to the magnetic form factor of the $\Lambda(1405)$ drops by an order of magnitude and approaches zero.

Correlation function ratio providing $\mathcal{G}_M^s(Q^2)$

- As the simulation parameters describing the strange quark are held fixed, this is a remarkable environmental effect of unprecedented strength.
- We observe an important rearrangement of the quark structure within the $\Lambda(1405)$ consistent with the dominance of a molecular $\overline{K}N$ bound state.

Hamiltonian Effective Field Theory Model

• The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.

Hamiltonian Effective Field Theory Model

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- It also includes a single-particle state with bare mass, $m_0 + lpha_0 \ m_\pi^2$.

Hamiltonian Effective Field Theory Model

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- It also includes a single-particle state with bare mass, $m_0 + lpha_0 \ m_\pi^2$.
- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- It also includes a single-particle state with bare mass, $\emph{m}_0 + \alpha_0 \ \emph{m}_\pi^2$.
- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.
- Working on a cubic volume of extent L on each side, it is convenient to define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \, \frac{2\pi}{L} \,,$$

with $n_i = 0, 1, 2, \ldots$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

Hamiltonian model, H_0

Denoting each meson-baryon energy by $\omega_{MB}(k_n) = \omega_M(k_n) + \omega_B(k_n)$, with $\omega_A(k_n) \equiv \sqrt{k_n^2 + m_A^2}$, the non-interacting Hamiltonian takes the form

$$H_0 = \begin{pmatrix} m_0 + \alpha_0 \, m_\pi^2 & 0 & 0 & \cdots \\ & \omega_{\pi \Sigma}(k_0) & & & & \\ 0 & & \ddots & & 0 & \cdots \\ & & & \omega_{\eta \Lambda}(k_0) & & \\ & & & & \omega_{\pi \Sigma}(k_1) & & \\ & 0 & & 0 & & \ddots & \cdots \\ & & & & \omega_{\eta \Lambda}(k_1) & \\ \vdots & & \vdots & & \vdots & \ddots \end{pmatrix}.$$

Hamiltonian model, H_I

• Interaction entries describe the coupling of the single-particle state to the two-particle meson-baryon states.

Hamiltonian model, H_i

- Interaction entries describe the coupling of the single-particle state

The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + \alpha_0 m_{\pi}^2 - \sum_{M,B} \sum_{n=0}^{\infty} \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda}.$$

with λ denoting the energy eigenvalue.

The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + \alpha_0 m_{\pi}^2 - \sum_{M,B} \sum_{n=0}^{\infty} \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda}.$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass $m_0+\alpha_0\,m_\pi^2$ encounters self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.

The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + \alpha_0 m_{\pi}^2 - \sum_{M,B} \sum_{n=0}^{\infty} \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda}.$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass $m_0 + \alpha_0 \ m_\pi^2$ encounters self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.
- Reference to chiral effective field theory provides the form of $g_{MB}(k_n)$.

• The LAPACK software library routine dgeev is used to obtain the eigenvalues and eigenvectors of *H*.

- The LAPACK software library routine dgeev is used to obtain the eigenvalues and eigenvectors of H.
- The bare mass parameters m_0 and α_0 are determined by a fit to the lattice QCD results.

Hamiltonian model fit

Energy eigenstate, $|E\rangle$, basis $|state\rangle$ composition

Volume dependence of the odd-parity Λ spectrum

Infinite-volume reconstruction of the $\Lambda(1405)$ energy

 Bootstraps are calculated by altering the value of each lattice data point by a Gaussian-distributed random number, weighted by the uncertainty.

Bootstrap outcomes

 The Λ(1405) has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.

- The Λ(1405) has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.

- The Λ(1405) has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- This structure is signified by:
 - $\circ~$ The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405),$ and

- The Λ(1405) has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- This structure is signified by:
 - $\circ~$ The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405),$ and
 - \circ The dominance of the $\overline{K}N$ component found in the finite-volume effective field theory Hamiltonian treatment.

- The Λ(1405) has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- This structure is signified by:
 - $\circ~$ The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405),$ and
 - \circ The dominance of the $\overline{K}N$ component found in the finite-volume effective field theory Hamiltonian treatment.
- The result ends 50 years of speculation on the structure of the $\Lambda(1405)$ resonance.

Supplementary Information

The following slides provide additional information which may be of interest.

$\mathcal{G}_{\mathsf{M}}^s(q^2)$ scaled to $\mathcal{G}_{\mathsf{M}}^s(0)$ via $\mathcal{G}_{\mathsf{M}}^s(q^2)/\mathcal{G}_{\mathsf{E}}^s(q^2)$

\mathcal{G}_{E} for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

G_E for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\overline{K}(s,\overline{\ell})$ $N(\ell,u,d)$ is nearer the heavier N,
 - $\circ~$ The anti–light-quark contribution, $\overline{\ell},$ is distributed further out by the \overline{K} and leaves an enhanced light-quark form factor.

G_E for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\overline{K}(s,\overline{\ell})$ $N(\ell,u,d)$ is nearer the heavier N,
 - \circ The anti–light-quark contribution, $\overline{\ell},$ is distributed further out by the \overline{K} and leaves an enhanced light-quark form factor.
 - \circ The strange quark may be distributed further out by the \overline{K} and thus have a smaller form factor.

\mathcal{G}_{E} for the $\Lambda(1405)$

 The form of the interaction is derived from chiral effective field theory.

$$g_{MB}(k_n) = \left(\frac{\kappa_{MB}}{16\pi^2 f_{\pi}^2} \frac{C_3(n)}{4\pi} \left(\frac{2\pi}{L}\right)^3 \omega_M(k_n) u^2(k_n)\right)^{1/2}.$$

• κ_{MB} denotes the SU(3)-flavour singlet couplings

$$\kappa_{\pi\Sigma}=3\xi_0, \qquad \kappa_{ar{K}N}=2\xi_0, \qquad \kappa_{K\Xi}=2\xi_0, \qquad \kappa_{\eta\Lambda}=\xi_0,$$

with $\xi_0=0.75$ reproducing the physical $\Lambda(1405) o \pi \Sigma$ width.

 The form of the interaction is derived from chiral effective field theory.

$$g_{MB}(k_n) = \left(\frac{\kappa_{MB}}{16\pi^2 f_{\pi}^2} \frac{C_3(n)}{4\pi} \left(\frac{2\pi}{L}\right)^3 \omega_M(k_n) u^2(k_n)\right)^{1/2}.$$

• κ_{MB} denotes the SU(3)-flavour singlet couplings

$$\kappa_{\pi\Sigma} = 3\xi_0, \qquad \kappa_{\bar{K}N} = 2\xi_0, \qquad \kappa_{K\Xi} = 2\xi_0, \qquad \kappa_{\eta\Lambda} = \xi_0,$$

with $\xi_0=0.75$ reproducing the physical $\Lambda(1405) o \pi \Sigma$ width.

• $C_3(n)$ is a combinatorial factor equal to the number of unique permutations of the momenta indices $\pm n_x$, $\pm n_y$ and $\pm n_z$.

Hamiltonian model, H_l

 The form of the interaction is derived from chiral effective field theory.

$$g_{MB}(k_n) = \left(\frac{\kappa_{MB}}{16\pi^2 f_{\pi}^2} \frac{C_3(n)}{4\pi} \left(\frac{2\pi}{L}\right)^3 \omega_M(k_n) u^2(k_n)\right)^{1/2}.$$

• κ_{MB} denotes the SU(3)-flavour singlet couplings

$$\kappa_{\pi\Sigma} = 3\xi_0, \qquad \kappa_{\bar{K}N} = 2\xi_0, \qquad \kappa_{K\Xi} = 2\xi_0, \qquad \kappa_{\eta\Lambda} = \xi_0,$$

with $\xi_0 = 0.75$ reproducing the physical $\Lambda(1405) \to \pi \Sigma$ width.

- $C_3(n)$ is a combinatorial factor equal to the number of unique permutations of the momenta indices $\pm n_x$, $\pm n_y$ and $\pm n_z$.
- $u(k_n)$ is a dipole regulator, with regularization scale $\Lambda = 0.8$ GeV.

Infinite-volume reconstruction of the $\Lambda(1405)$ energy

The eigenstate-projected three-point correlation function is

$$G_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) = \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_{2}} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_{1}} \times \\ \times \langle \Omega|v_{i}^{\alpha}(\mathbf{p}')\,\chi_{i}(x_{2})j^{\mu}(x_{1})\,\overline{\chi}_{j}(0)\,u_{i}^{\alpha}(\mathbf{p})|\Omega\rangle \\ = \mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}')\,G_{ij}^{\mu}(\mathbf{p}',\mathbf{p};t_{2},t_{1})\,\mathbf{u}^{\alpha}(\mathbf{p})$$

where

$$G_{ij}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \sum_{\mathbf{x}_1,\mathbf{x}_2} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_2} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_1} \langle \Omega | \chi_i(x_2) j^{\mu}(x_1) \,\overline{\chi}_j(0) | \Omega \rangle$$

is the matrix constructed from the three-point correlation functions of the original operators $\{\chi_i\}$.

Extracting Form Factors from Lattice QCD

 To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$R_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \left(\frac{G_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) G_{\alpha}^{\mu}(\mathbf{p},\mathbf{p}';t_2,t_1)}{G_{\alpha}(\mathbf{p}';t_2) G_{\alpha}(\mathbf{p};t_2)}\right)^{1/2}$$

Extracting Form Factors from Lattice QCD

• To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$R_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \left(\frac{G_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) G_{\alpha}^{\mu}(\mathbf{p},\mathbf{p}';t_2,t_1)}{G_{\alpha}(\mathbf{p}';t_2) G_{\alpha}(\mathbf{p};t_2)}\right)^{1/2}$$

To further simply things, we define the reduced ratio

$$\overline{R}_{\alpha}^{\mu} = \left(\frac{2E_{\alpha}(\mathbf{p})}{E_{\alpha}(\mathbf{p}) + m_{\alpha}}\right)^{1/2} \left(\frac{2E_{\alpha}(\mathbf{p}')}{E_{\alpha}(\mathbf{p}') + m_{\alpha}}\right)^{1/2} R_{\alpha}^{\mu}$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s'|j^{\mu}|p, s\rangle = \left(\frac{m_{\alpha}^{2}}{E_{\alpha}(\mathbf{p})E_{\alpha}(\mathbf{p}')}\right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_{1}(q^{2})\gamma^{\mu} + i F_{2}(q^{2}) \sigma^{\mu\nu} \frac{q^{\nu}}{2m_{\alpha}}\right) u(\mathbf{p})$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s' | j^{\mu} | p, s \rangle = \left(\frac{m_{\alpha}^2}{E_{\alpha}(\mathbf{p}) E_{\alpha}(\mathbf{p}')} \right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_1(q^2) \gamma^{\mu} + i F_2(q^2) \sigma^{\mu\nu} \frac{q^{\nu}}{2m_{\alpha}} \right) u(\mathbf{p})$$

 The Dirac and Pauli form factors are related to the Sachs form factors through

$$\mathcal{G}_{\mathsf{E}}(q^2) = F_1(q^2) - rac{q^2}{(2m^{lpha})^2} F_2(q^2)$$
 $\mathcal{G}_{\mathsf{M}}(q^2) = F_1(q^2) + F_2(q^2)$

Sachs Form Factors for Spin-1/2 Baryons

- A suitable choice of momentum $(\mathbf{q} = (q, 0, 0))$ and the (implicit) Dirac matrices allows us to directly access the Sachs form factors:
 - \circ for \mathcal{G}_{E} : using Γ_4^\pm for both two- and three-point,

$$\mathcal{G}^{\alpha}_{\mathsf{E}}(q^2) = \overline{R}^4_{\alpha}(\mathbf{q}, \mathbf{0}; t_2, t_1)$$

 \circ for \mathcal{G}_M : using Γ_4^\pm for two-point and Γ_j^\pm for three-point,

$$|\varepsilon_{ijk} q^i| \mathcal{G}_{\mathsf{M}}^{\alpha}(q^2) = (\mathcal{E}_{\alpha}(\mathbf{q}) + m_{\alpha}) \overline{R}_{\alpha}^k(\mathbf{q}, \mathbf{0}; t_2, t_1)$$

where for positive parity states,

$$\Gamma_j^+ = rac{1}{2} egin{bmatrix} \sigma_j & 0 \ 0 & 0 \end{bmatrix} \qquad \Gamma_4^+ = rac{1}{2} egin{bmatrix} \mathbb{I} & 0 \ 0 & 0 \end{bmatrix}$$

and for negative parity states,

$$\Gamma_j^- = -\gamma_5 \Gamma_j^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_j \end{bmatrix} \qquad \Gamma_4^- = -\gamma_5 \Gamma_4^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{I} \end{bmatrix}$$