The $\Lambda(1405)$ is an anti-kaon-nucleon molecule

Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

SPECIAL RESEARCH

CENTREFOR THE
SUBAT®MIC

THE UNIVERSITY ofADELAIDE

The $\Lambda(1405)$

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- Even though it contains a heavy strange quark and has odd parity its mass is lower than any other excited spin- $1 / 2$ baryon.
- It has a mass of $1405.1_{-1.0}^{+1.3} \mathrm{MeV}$.
- This is lower than the lowest odd-parity nucleon state ($N(1535)$), even though it has a valence strange quark.

The $\Lambda(1405)$

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- Even though it contains a heavy strange quark and has odd parity its mass is lower than any other excited spin- $1 / 2$ baryon.
- It has a mass of $1405.1_{-1.0}^{+1.3} \mathrm{MeV}$.
- This is lower than the lowest odd-parity nucleon state ($N(1535)$), even though it has a valence strange quark.
- Before the existence of quarks was confirmed, Dalitz and co-workers speculated that it might be a molecular state of an anti-kaon bound to a nucleon.

The $\Lambda(1405)$

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- Even though it contains a heavy strange quark and has odd parity its mass is lower than any other excited spin- $1 / 2$ baryon.
- It has a mass of $1405.1_{-1.0}^{+1.3} \mathrm{MeV}$.
- This is lower than the lowest odd-parity nucleon state ($N(1535)$), even though it has a valence strange quark.
- Before the existence of quarks was confirmed, Dalitz and co-workers speculated that it might be a molecular state of an anti-kaon bound to a nucleon.
- For almost 50 years the structure of the $\Lambda(1405)$ resonance has been a subject of debate.

The $\Lambda(1405)$

- Here we'll see how a new lattice QCD simulation showing
- The $\Lambda(1405)$ strange magnetic form factor vanishes, together with
- A Hamiltonian effective field theory analysis of the lattice QCD energy levels,
unambiguously establishes that the structure is dominated by a bound anti-kaon-nucleon component.

Why focus on the strange magnetic form factor?

- It provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- It provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- It provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- It provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- It provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})$ - proton (u, u, d) bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})$ - neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is in a $\bar{K} N$ molecule.

Outline

Techniques for exciting the $\Lambda(1405)$ in Lattice QCD

Quark-sector contributions to the electric form factor of the $\Lambda(1405)$

Quark-sector contributions to the magnetic form factor of the $\Lambda(1405)$

Hamiltonian effective field theory model: $m_{0}, \pi \Sigma, \bar{K} N, K$ 三 and $\eta \Lambda$.

Conclusion

The $\Lambda(1405)$ and Lattice QCD

Our recent work has successfully isolated three low-lying odd-parity spin-1/2 states.
B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

- An extrapolation of the trend of the lowest state reproduces the mass of the $\Lambda(1405)$.
- Subsequent studies have confirmed these results.
G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)

$\Lambda(1405)$ and Baryon Octet dominated states

Simulation Details

We are using the PACS-CS $(2+1)$-flavour ensembles, available through the ILDG.
S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^{3} \times 64$ with $\beta=1.90 . L \simeq 3 \mathrm{fm}$.

Simulation Details

We are using the PACS-CS $(2+1)$-flavour ensembles, available through the ILDG.
S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^{3} \times 64$ with $\beta=1.90 . L \simeq 3 \mathrm{fm}$.
- 5 pion masses, ranging from 640 MeV down to 156 MeV .

Simulation Details

We are using the PACS-CS $(2+1)$-flavour ensembles, available through the ILDG.
S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^{3} \times 64$ with $\beta=1.90 . L \simeq 3 \mathrm{fm}$.
- 5 pion masses, ranging from 640 MeV down to 156 MeV .
- Single strange quark mass, with $\kappa_{s}=0.13640$.
- We use $\kappa_{s}=0.13665$ for the valence strange quarks to reproduce the physical kaon mass.

Simulation Details

We are using the PACS-CS $(2+1)$-flavour ensembles, available through the ILDG.
S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^{3} \times 64$ with $\beta=1.90 . L \simeq 3 \mathrm{fm}$.
- 5 pion masses, ranging from 640 MeV down to 156 MeV .
- Single strange quark mass, with $\kappa_{s}=0.13640$.
- We use $\kappa_{s}=0.13665$ for the valence strange quarks to reproduce the physical kaon mass.
- The strange quark κ_{s} is held fixed as the light quark masses vary.
- Changes in the strange quark contributions are environmental effects.

The $\Lambda(1405)$ and Lattice QCD

The variational analysis is necessary to isolate the $\Lambda(1405)$.

Variational Analysis

By using multiple operators, we can isolate and analyse individual energy eigenstates:

- Construct the correlation matrix

$$
G_{i j}(\mathbf{p} ; t)=\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i} \mathbf{p} \cdot \mathbf{x}} \operatorname{tr}\left(\Gamma\langle\Omega| \chi_{i}(x) \bar{\chi}_{j}(0)|\Omega\rangle\right),
$$

for some set $\left\{\chi_{i}\right\}$ operators that couple to the states of interest.

Variational Analysis

By using multiple operators, we can isolate and analyse individual energy eigenstates:

- Construct the correlation matrix

$$
G_{i j}(\mathbf{p} ; t)=\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i} \mathbf{p} \cdot \mathbf{x}} \operatorname{tr}\left(\Gamma\langle\Omega| \chi_{i}(x) \bar{\chi}_{j}(0)|\Omega\rangle\right),
$$

for some set $\left\{\chi_{i}\right\}$ operators that couple to the states of interest.

- We seek the linear combinations of the operators $\left\{\chi_{i}\right\}$ that perfectly isolate individual energy eigenstates, α, at momentum \mathbf{p} :

$$
\phi^{\alpha}=v_{i}^{\alpha}(\mathbf{p}) \chi_{i}, \quad \bar{\phi}^{\alpha}=u_{i}^{\alpha}(\mathbf{p}) \bar{\chi}_{i}
$$

Variational Analysis

- When successful, only state α participates in the correlation function, and one can write recurrence relations

$$
\begin{gathered}
G(\mathbf{p} ; t+\delta t) \mathbf{u}^{\alpha}(\mathbf{p})=\mathrm{e}^{-E_{\alpha}(\mathbf{p}) \delta t} G(\mathbf{p} ; t) \mathbf{u}^{\alpha}(\mathbf{p}) \\
\mathbf{v}^{\alpha \mathrm{T}}(\mathbf{p}) G(\mathbf{p} ; t+\delta t)=\mathrm{e}^{-E_{\alpha}(\mathbf{p}) \delta t} \mathbf{v}^{\alpha \mathrm{T}}(\mathbf{p}) G(\mathbf{p} ; t)
\end{gathered}
$$

Variational Analysis

- When successful, only state α participates in the correlation function, and one can write recurrence relations

$$
\begin{gathered}
G(\mathbf{p} ; t+\delta t) \mathbf{u}^{\alpha}(\mathbf{p})=\mathrm{e}^{-E_{\alpha}(\mathbf{p}) \delta t} G(\mathbf{p} ; t) \mathbf{u}^{\alpha}(\mathbf{p}) \\
\mathbf{v}^{\alpha \mathrm{T}}(\mathbf{p}) G(\mathbf{p} ; t+\delta t)=\mathrm{e}^{-E_{\alpha}(\mathbf{p}) \delta t} \mathbf{v}^{\alpha \mathrm{T}}(\mathbf{p}) G(\mathbf{p} ; t)
\end{gathered}
$$

- Solve for the left, $\mathbf{v}^{\alpha}(\mathbf{p})$, and right, $\mathbf{u}^{\alpha}(\mathbf{p})$, generalised eigenvectors of $G(\mathbf{p} ; t+\delta t)$ and $G(\mathbf{p} ; t)$:

Eigenstate-Projected Correlation Functions

- Using these optimal operators, eigenstate-projected correlation functions are obtained

$$
\begin{aligned}
G^{\alpha}(\mathbf{p} ; t) & =\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i} \mathbf{p} \cdot \mathbf{x}}\langle\Omega| \phi^{\alpha}(x) \bar{\phi}^{\alpha}(0)|\Omega\rangle \\
& =\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i} \mathbf{p} \cdot x}\langle\Omega| v_{i}^{\alpha}(\mathbf{p}) \chi_{i}(x) \bar{\chi}_{j}(0) u_{j}^{\alpha}(\mathbf{p})|\Omega\rangle \\
& =\mathbf{v}^{\alpha \top}(\mathbf{p}) G(\mathbf{p} ; t) \mathbf{u}^{\alpha}(\mathbf{p})
\end{aligned}
$$

The importance of eigenstate isolation (red)

Probing with the electromagnetic current

Only the projected correlator has acceptable $\chi^{2} /$ dof

Operators Used in $\Lambda(1405)$ Analysis

We consider local three-quark operators with the correct quantum numbers for the Λ channel, including

- Flavour-octet operators

$$
\begin{aligned}
& \chi_{1}^{8}=\frac{1}{\sqrt{6}} \varepsilon^{a b c}\left(2\left(u^{a} C \gamma_{5} d^{b}\right) s^{c}+\left(u^{a} C \gamma_{5} s^{b}\right) d^{c}-\left(d^{a} C \gamma_{5} s^{b}\right) u^{c}\right) \\
& \chi_{2}^{8}=\frac{1}{\sqrt{6}} \varepsilon^{a b c}\left(2\left(u^{a} C d^{b}\right) \gamma_{5} s^{c}+\left(u^{a} C s^{b}\right) \gamma_{5} d^{c}-\left(d^{a} C s^{b}\right) \gamma_{5} u^{c}\right)
\end{aligned}
$$

- Flavour-singlet operator

$$
\chi^{1}=2 \varepsilon^{a b c}\left(\left(u^{a} C \gamma_{5} d^{b}\right) s^{c}-\left(u^{a} C \gamma_{5} s^{b}\right) d^{c}+\left(d^{a} C \gamma_{5} s^{b}\right) u^{c}\right)
$$

Operators Used in $\Lambda(1405)$ Analysis

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
- Gives a 6×6 matrix.

Operators Used in $\Lambda(1405)$ Analysis

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
- Gives a 6×6 matrix.
- Also considered 35 and 100 sweeps.
- Results are consistent with larger statistical uncertainties.

Flavour structure of the $\Lambda(1405)$

Extracting Form Factors from Lattice QCD

- To extract the form factors for a state α, we need to calculate the three-point correlation function

$$
G_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)=\sum_{\mathbf{x}_{1}, \mathbf{x}_{2}} \mathrm{e}^{-\mathrm{i} \mathbf{p}^{\prime} \cdot \mathbf{x}_{2}} \mathrm{e}^{\mathrm{i}\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \cdot \mathbf{x}_{1}}\langle\Omega| \phi^{\alpha}\left(x_{2}\right) j^{\mu}\left(x_{1}\right) \bar{\phi}^{\alpha}(0)|\Omega\rangle
$$

Extracting Form Factors from Lattice QCD

- To extract the form factors for a state α, we need to calculate the three-point correlation function

$$
G_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)=\sum_{\mathbf{x}_{1}, \mathbf{x}_{2}} \mathrm{e}^{-\mathrm{i} \mathbf{p}^{\prime} \cdot \mathbf{x}_{2}} \mathrm{e}^{\mathrm{i}\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \cdot \mathbf{x}_{1}}\langle\Omega| \phi^{\alpha}\left(x_{2}\right) j^{\mu}\left(x_{1}\right) \bar{\phi}^{\alpha}(0)|\Omega\rangle
$$

- This takes the form

$$
\mathrm{e}^{-E_{\alpha}\left(\mathbf{p}^{\prime}\right)\left(t_{2}-t_{1}\right)} \mathrm{e}^{-E_{\alpha}(\mathbf{p}) t_{1}} \sum_{s, s^{\prime}}\langle\Omega| \phi^{\alpha}\left|p^{\prime}, s^{\prime}\right\rangle\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle\langle p, s| \bar{\phi}^{\alpha}|\Omega\rangle
$$

Extracting Form Factors from Lattice QCD

- To extract the form factors for a state α, we need to calculate the three-point correlation function

$$
G_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)=\sum_{\mathbf{x}_{1}, \mathbf{x}_{2}} \mathrm{e}^{-\mathrm{i} \mathbf{p}^{\prime} \cdot \mathbf{x}_{2}} \mathrm{e}^{\mathrm{i}\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \cdot \mathbf{x}_{1}}\langle\Omega| \phi^{\alpha}\left(x_{2}\right) j^{\mu}\left(x_{1}\right) \bar{\phi}^{\alpha}(0)|\Omega\rangle
$$

- This takes the form

$$
\mathrm{e}^{-E_{\alpha}\left(\mathbf{p}^{\prime}\right)\left(t_{2}-t_{1}\right)} \mathrm{e}^{-E_{\alpha}(\mathbf{p}) t_{1}} \sum_{s, s^{\prime}}\langle\Omega| \phi^{\alpha}\left|p^{\prime}, s^{\prime}\right\rangle\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle\langle p, s| \bar{\phi}^{\alpha}|\Omega\rangle
$$

- $\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle$ encodes the form factors of the interaction.

Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin- $1 / 2$ baryons has the form

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle= & \left(\frac{m_{\alpha}^{2}}{E_{\alpha}(\mathbf{p}) E_{\alpha}\left(\mathbf{p}^{\prime}\right)}\right)^{1 / 2} \times \\
& \times \bar{u}\left(\mathbf{p}^{\prime}\right)\left(F_{1}\left(q^{2}\right) \gamma^{\mu}+\mathrm{i} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} \frac{q^{\nu}}{2 m_{\alpha}}\right) u(\mathbf{p})
\end{aligned}
$$

Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle= & \left(\frac{m_{\alpha}^{2}}{E_{\alpha}(\mathbf{p}) E_{\alpha}\left(\mathbf{p}^{\prime}\right)}\right)^{1 / 2} \times \\
& \times \bar{u}\left(\mathbf{p}^{\prime}\right)\left(F_{1}\left(q^{2}\right) \gamma^{\mu}+\mathrm{i} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} \frac{q^{\nu}}{2 m_{\alpha}}\right) u(\mathbf{p})
\end{aligned}
$$

- The Dirac and Pauli form factors are related to the Sachs form factors through

$$
\begin{aligned}
& \mathcal{G}_{\mathrm{E}}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{\left(2 m^{\alpha}\right)^{2}} F_{2}\left(q^{2}\right) \\
& \mathcal{G}_{\mathrm{M}}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned}
$$

Current Matrix Elements for Spin-1/2 Baryons

The light- and strange-quark sector contributions can be isolated.

- Eg. The strange sector is isolated by setting $q_{u}=q_{d}=0$.
- q_{s} is set to unity such that we report results for single quarks of unit charge.
- Symmetry in the u - d sector provides $\mathcal{G}^{u}\left(Q^{2}\right)=\mathcal{G}^{d}\left(Q^{2}\right) \equiv \mathcal{G}^{\ell}\left(Q^{2}\right)$ for $q_{u}=q_{d}=1$.
\mathcal{G}_{E} for the $\Lambda(1405)$ at $Q^{2} \sim 0.16 \mathrm{GeV}^{2}$

$\underline{\mathcal{G}_{M}}$ for the $\Lambda(1405)$ at $Q^{2} \sim 0.16 \mathrm{GeV}^{2}$

$\Lambda(1405)$ magnetic form factor observations

- $S U(3)$-flavour symmetry is manifest for $m_{\ell} \sim m_{s}$. All three quark flavours play a similar role.
- $\mathcal{G}_{M}^{\ell} \equiv \mathcal{G}_{M}^{U} \equiv \mathcal{G}_{M}^{d} \simeq \mathcal{G}_{M}^{s}$ for the heaviest three masses.

$\Lambda(1405)$ magnetic form factor observations

$\Lambda(1405)$ magnetic form factor observations

- The internal structure of the $\Lambda(1405)$ reorganises at the lightest quark mass.
- The strange quark contribution to the magnetic form factor of the $\Lambda(1405)$ drops by an order of magnitude and approaches zero.

$\Lambda(1405)$ magnetic form factor observations

Correlation function ratio providing $\mathcal{G}_{M}^{s}\left(Q^{2}\right)$

$\Lambda(1405)$ magnetic form factor observations

- As the simulation parameters describing the strange quark are held fixed, this is a remarkable environmental effect of unprecedented strength.
- We observe an important rearrangement of the quark structure within the $\Lambda(1405)$ consistent with the dominance of a molecular $\bar{K} N$ bound state.

Hamiltonian Effective Field Theory Model

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi \Sigma, \bar{K} N, K \equiv$ and $\eta \Lambda$.

Hamiltonian Effective Field Theory Model

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi \Sigma, \bar{K} N, K \equiv$ and $\eta \Lambda$.
- It also includes a single-particle state with bare mass, $m_{0}+\alpha_{0} m_{\pi}^{2}$.

Hamiltonian Effective Field Theory Model

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi \Sigma, \bar{K} N, K \equiv$ and $\eta \Lambda$.
- It also includes a single-particle state with bare mass, $m_{0}+\alpha_{0} m_{\pi}^{2}$.
- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.

Hamiltonian Effective Field Theory Model

- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are included: $\pi \Sigma, \bar{K} N, K \equiv$ and $\eta \Lambda$.
- It also includes a single-particle state with bare mass, $m_{0}+\alpha_{0} m_{\pi}^{2}$.
- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- Working on a cubic volume of extent L on each side, it is convenient to define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L},
$$

with $n_{i}=0,1,2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

Hamiltonian model, H_{0}

Denoting each meson-baryon energy by $\omega_{M B}\left(k_{n}\right)=\omega_{M}\left(k_{n}\right)+\omega_{B}\left(k_{n}\right)$, with $\omega_{A}\left(k_{n}\right) \equiv \sqrt{k_{n}^{2}+m_{A}^{2}}$, the non-interacting Hamiltonian takes the form

Hamiltonian model, H_{l}

- Interaction entries describe the coupling of the single-particle state to the two-particle meson-baryon states.

Hamiltonian model, H_{I}

- Interaction entries describe the coupling of the single-particle state to the two-particle meson-baryon states.
- Each entry represents the S-wave interaction energy of the $\Lambda(1405)$ with one of the four channels at a certain value for k_{n}.

$$
H_{I}=\left(\begin{array}{cccccc}
0 & g_{\pi \Sigma}\left(k_{0}\right) & \cdots & g_{\eta \Lambda}\left(k_{0}\right) & g_{\pi \Sigma}\left(k_{1}\right) & \cdots \\
g_{\pi \Sigma}\left(k_{0}\right) & 0 & \cdots & g_{\eta \Lambda}\left(k_{1}\right) \cdots \\
\vdots & \vdots & 0 & & & \\
g_{\eta \Lambda}\left(k_{0}\right) & & & \ddots & & \\
g_{\pi \Sigma}\left(k_{1}\right) & & & & & \\
\vdots & & & & & \\
g_{\eta \Lambda}\left(k_{1}\right) & & & & & \\
\vdots & & & & &
\end{array}\right)
$$

Eigenvalue Equation Form

- The eigenvalue equation corresponding to our Hamiltonian model is

$$
\lambda=m_{0}+\alpha_{0} m_{\pi}^{2}-\sum_{M, B} \sum_{n=0}^{\infty} \frac{g_{M B}^{2}\left(k_{n}\right)}{\omega_{M B}\left(k_{n}\right)-\lambda} .
$$

with λ denoting the energy eigenvalue.

Eigenvalue Equation Form

- The eigenvalue equation corresponding to our Hamiltonian model is

$$
\lambda=m_{0}+\alpha_{0} m_{\pi}^{2}-\sum_{M, B} \sum_{n=0}^{\infty} \frac{g_{M B}^{2}\left(k_{n}\right)}{\omega_{M B}\left(k_{n}\right)-\lambda} .
$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass $m_{0}+\alpha_{0} m_{\pi}^{2}$ encounters self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.

Eigenvalue Equation Form

- The eigenvalue equation corresponding to our Hamiltonian model is

$$
\lambda=m_{0}+\alpha_{0} m_{\pi}^{2}-\sum_{M, B} \sum_{n=0}^{\infty} \frac{g_{M B}^{2}\left(k_{n}\right)}{\omega_{M B}\left(k_{n}\right)-\lambda} .
$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass $m_{0}+\alpha_{0} m_{\pi}^{2}$ encounters self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.
- Reference to chiral effective field theory provides the form of $g_{M B}\left(k_{n}\right)$.

Hamiltonian model solution and fit

- The LAPACK software library routine dgeev is used to obtain the eigenvalues and eigenvectors of H.

Hamiltonian model solution and fit

- The LAPACK software library routine dgeev is used to obtain the eigenvalues and eigenvectors of H.
- The bare mass parameters m_{0} and α_{0} are determined by a fit to the lattice QCD results.

Hamiltonian model fit

Avoided Level Crossing

Volume dependence of the odd-parity Λ spectrum

Infinite-volume reconstruction of the $\Lambda(1405)$ energy

- Bootstraps are calculated by altering the value of each lattice data point by a Gaussian-distributed random number, weighted by the uncertainty.

Bootstrap outcomes

Conclusions

- The $\Lambda(1405)$ has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.

Conclusions

- The $\Lambda(1405)$ has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.

Conclusions

- The $\Lambda(1405)$ has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- This structure is signified by:
- The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405)$, and

Conclusions

- The $\Lambda(1405)$ has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- This structure is signified by:
- The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405)$, and
- The dominance of the $\bar{K} N$ component found in the finite-volume effective field theory Hamiltonian treatment.

Conclusions

- The $\Lambda(1405)$ has been identified on the lattice through a study of its quark mass dependence and its relation to avoided level crossings in effective field theory.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- This structure is signified by:
- The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405)$, and
- The dominance of the $\bar{K} N$ component found in the finite-volume effective field theory Hamiltonian treatment.
- The result ends 50 years of speculation on the structure of the $\Lambda(1405)$ resonance.

Supplementary Information

The following slides provide additional information which may be of interest.

Dispersion Relation Test for the $\Lambda(1405)$

$\mathcal{G}_{\mathrm{M}}^{s}\left(q^{2}\right)$ scaled to $\mathcal{G}_{\mathrm{M}}^{s}(0)$ via $\mathcal{G}_{\mathrm{M}}^{s}\left(q^{2}\right) / \mathcal{G}_{\mathcal{E}}^{s}\left(q^{2}\right)$

$\mathcal{G}_{\text {E }}$ for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_{E} are consistent with the development of a non-trivial $\overline{\mathrm{K}} \mathrm{N}$ component at light quark masses.

\mathcal{G}_{E} for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_{E} are consistent with the development of a non-trivial $\overline{\mathrm{K}} \mathrm{N}$ component at light quark masses.

- Noting that the centre of mass of the $\bar{K}(s, \bar{\ell}) N(\ell, u, d)$ is nearer the heavier N ,
- The anti-light-quark contribution, $\bar{\ell}$, is distributed further out by the $\overline{\mathrm{K}}$ and leaves an enhanced light-quark form factor.

$\mathcal{G}_{\text {E }}$ for the $\Lambda(1405)$

\mathcal{G}_{E} for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_{E} are consistent with the development of a non-trivial $\overline{\mathrm{K}} \mathrm{N}$ component at light quark masses.

- Noting that the centre of mass of the $\bar{K}(s, \bar{\ell}) N(\ell, u, d)$ is nearer the heavier N ,
- The anti-light-quark contribution, $\bar{\ell}$, is distributed further out by the $\overline{\mathrm{K}}$ and leaves an enhanced light-quark form factor.
- The strange quark may be distributed further out by the $\overline{\mathrm{K}}$ and thus have a smaller form factor.

$\mathcal{G}_{\text {E }}$ for the $\Lambda(1405)$

Hamiltonian model, H_{I}

- The form of the interaction is derived from chiral effective field theory.

$$
g_{M B}\left(k_{n}\right)=\left(\frac{\kappa_{M B}}{16 \pi^{2} f_{\pi}^{2}} \frac{C_{3}(n)}{4 \pi}\left(\frac{2 \pi}{L}\right)^{3} \omega_{M}\left(k_{n}\right) u^{2}\left(k_{n}\right)\right)^{1 / 2} .
$$

- $\kappa_{M B}$ denotes the $S U(3)$-flavour singlet couplings

$$
\kappa_{\pi \Sigma}=3 \xi_{0}, \quad \kappa_{\bar{K} N}=2 \xi_{0}, \quad \kappa_{K \equiv}=2 \xi_{0}, \quad \kappa_{\eta \Lambda}=\xi_{0}
$$

with $\xi_{0}=0.75$ reproducing the physical $\Lambda(1405) \rightarrow \pi \Sigma$ width.

Hamiltonian model, H_{I}

- The form of the interaction is derived from chiral effective field theory.

$$
g_{M B}\left(k_{n}\right)=\left(\frac{\kappa_{M B}}{16 \pi^{2} f_{\pi}^{2}} \frac{C_{3}(n)}{4 \pi}\left(\frac{2 \pi}{L}\right)^{3} \omega_{M}\left(k_{n}\right) u^{2}\left(k_{n}\right)\right)^{1 / 2} .
$$

- $\kappa_{M B}$ denotes the $S U(3)$-flavour singlet couplings

$$
\kappa_{\pi \Sigma}=3 \xi_{0}, \quad \kappa_{\bar{K} N}=2 \xi_{0}, \quad \kappa_{K \equiv}=2 \xi_{0}, \quad \kappa_{\eta \Lambda}=\xi_{0}
$$

with $\xi_{0}=0.75$ reproducing the physical $\Lambda(1405) \rightarrow \pi \Sigma$ width.

- $C_{3}(n)$ is a combinatorial factor equal to the number of unique permutations of the momenta indices $\pm n_{x}, \pm n_{y}$ and $\pm n_{z}$.

Hamiltonian model, H_{I}

- The form of the interaction is derived from chiral effective field theory.

$$
g_{M B}\left(k_{n}\right)=\left(\frac{\kappa_{M B}}{16 \pi^{2} f_{\pi}^{2}} \frac{C_{3}(n)}{4 \pi}\left(\frac{2 \pi}{L}\right)^{3} \omega_{M}\left(k_{n}\right) u^{2}\left(k_{n}\right)\right)^{1 / 2} .
$$

- $\kappa_{M B}$ denotes the $S U(3)$-flavour singlet couplings

$$
\kappa_{\pi \Sigma}=3 \xi_{0}, \quad \kappa_{\bar{K} N}=2 \xi_{0}, \quad \kappa_{K \equiv}=2 \xi_{0}, \quad \kappa_{\eta \Lambda}=\xi_{0}
$$

with $\xi_{0}=0.75$ reproducing the physical $\Lambda(1405) \rightarrow \pi \Sigma$ width.

- $C_{3}(n)$ is a combinatorial factor equal to the number of unique permutations of the momenta indices $\pm n_{x}, \pm n_{y}$ and $\pm n_{z}$.
- $u\left(k_{n}\right)$ is a dipole regulator, with regularization scale $\Lambda=0.8 \mathrm{GeV}$. Infinite-volume reconstruction of the $\Lambda(1405)$ energy

Excited State Form Factors

- The eigenstate-projected three-point correlation function is

$$
\begin{aligned}
G_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)= & \sum_{\mathbf{x}_{1}, \mathbf{x}_{2}} \\
& \mathrm{e}^{-\mathrm{i} \mathbf{p}^{\prime} \cdot \mathbf{x}_{2}} \mathrm{e}^{\mathrm{i}\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \cdot \mathbf{x}_{1}} \times \\
& \times\langle\Omega| v_{i}^{\alpha}\left(\mathbf{p}^{\prime}\right) \chi_{i}\left(x_{2}\right) j^{\mu}\left(x_{1}\right) \bar{\chi}_{j}(0) u_{i}^{\alpha}(\mathbf{p})|\Omega\rangle \\
= & \mathbf{v}^{\alpha \mathrm{T}}\left(\mathbf{p}^{\prime}\right) G_{i j}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right) \mathbf{u}^{\alpha}(\mathbf{p})
\end{aligned}
$$

where

$$
G_{i j}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)=\sum_{\mathbf{x}_{1}, \mathbf{x}_{2}} \mathrm{e}^{-\mathrm{i} \mathbf{p}^{\prime} \cdot \mathbf{x}_{2}} \mathrm{e}^{\mathrm{i}\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \cdot \mathbf{x}_{1}}\langle\Omega| \chi_{i}\left(x_{2}\right) j^{\mu}\left(x_{1}\right) \bar{\chi}_{j}(0)|\Omega\rangle
$$

is the matrix constructed from the three-point correlation functions of the original operators $\left\{\chi_{i}\right\}$.

Extracting Form Factors from Lattice QCD

- To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$
R_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)=\left(\frac{G_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right) G_{\alpha}^{\mu}\left(\mathbf{p}, \mathbf{p}^{\prime} ; t_{2}, t_{1}\right)}{G_{\alpha}\left(\mathbf{p}^{\prime} ; t_{2}\right) G_{\alpha}\left(\mathbf{p} ; t_{2}\right)}\right)^{1 / 2}
$$

Extracting Form Factors from Lattice QCD

- To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$
R_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right)=\left(\frac{G_{\alpha}^{\mu}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t_{2}, t_{1}\right) G_{\alpha}^{\mu}\left(\mathbf{p}, \mathbf{p}^{\prime} ; t_{2}, t_{1}\right)}{G_{\alpha}\left(\mathbf{p}^{\prime} ; t_{2}\right) G_{\alpha}\left(\mathbf{p} ; t_{2}\right)}\right)^{1 / 2}
$$

- To further simply things, we define the reduced ratio

$$
\bar{R}_{\alpha}^{\mu}=\left(\frac{2 E_{\alpha}(\mathbf{p})}{E_{\alpha}(\mathbf{p})+m_{\alpha}}\right)^{1 / 2}\left(\frac{2 E_{\alpha}\left(\mathbf{p}^{\prime}\right)}{E_{\alpha}\left(\mathbf{p}^{\prime}\right)+m_{\alpha}}\right)^{1 / 2} R_{\alpha}^{\mu}
$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle= & \left(\frac{m_{\alpha}^{2}}{E_{\alpha}(\mathbf{p}) E_{\alpha}\left(\mathbf{p}^{\prime}\right)}\right)^{1 / 2} \times \\
& \times \bar{u}\left(\mathbf{p}^{\prime}\right)\left(F_{1}\left(q^{2}\right) \gamma^{\mu}+\mathrm{i} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} \frac{q^{\nu}}{2 m_{\alpha}}\right) u(\mathbf{p})
\end{aligned}
$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle= & \left(\frac{m_{\alpha}^{2}}{E_{\alpha}(\mathbf{p}) E_{\alpha}\left(\mathbf{p}^{\prime}\right)}\right)^{1 / 2} \times \\
& \times \bar{u}\left(\mathbf{p}^{\prime}\right)\left(F_{1}\left(q^{2}\right) \gamma^{\mu}+\mathrm{i} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} \frac{q^{\nu}}{2 m_{\alpha}}\right) u(\mathbf{p})
\end{aligned}
$$

- The Dirac and Pauli form factors are related to the Sachs form factors through

$$
\begin{aligned}
\mathcal{G}_{\mathrm{E}}\left(q^{2}\right) & =F_{1}\left(q^{2}\right)-\frac{q^{2}}{\left(2 m^{\alpha}\right)^{2}} F_{2}\left(q^{2}\right) \\
\mathcal{G}_{\mathrm{M}}\left(q^{2}\right) & =F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned}
$$

Sachs Form Factors for Spin-1/2 Baryons

- A suitable choice of momentum $(\mathbf{q}=(q, 0,0))$ and the (implicit) Dirac matrices allows us to directly access the Sachs form factors:
- for \mathcal{G}_{E} : using $\Gamma_{4}^{ \pm}$for both two- and three-point,

$$
\mathcal{G}_{E}^{\alpha}\left(q^{2}\right)=\bar{R}_{\alpha}^{4}\left(\mathbf{q}, \mathbf{0} ; t_{2}, t_{1}\right)
$$

- for \mathcal{G}_{M} : using $\Gamma_{4}^{ \pm}$for two-point and $\Gamma_{j}^{ \pm}$for three-point,

$$
\left|\varepsilon_{i j k} q^{i}\right| \mathcal{G}_{M}^{\alpha}\left(q^{2}\right)=\left(E_{\alpha}(\mathbf{q})+m_{\alpha}\right) \bar{R}_{\alpha}^{k}\left(\mathbf{q}, \mathbf{0} ; t_{2}, t_{1}\right)
$$

- where for positive parity states,

$$
\Gamma_{j}^{+}=\frac{1}{2}\left[\begin{array}{cc}
\sigma_{j} & 0 \\
0 & 0
\end{array}\right] \quad \Gamma_{4}^{+}=\frac{1}{2}\left[\begin{array}{ll}
\mathbb{I} & 0 \\
0 & 0
\end{array}\right]
$$

and for negative parity states,

$$
\Gamma_{j}^{-}=-\gamma_{5} \Gamma_{j}^{+} \gamma_{5}=-\frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
0 & \sigma_{j}
\end{array}\right] \quad \Gamma_{4}^{-}=-\gamma_{5} \Gamma_{4}^{+} \gamma_{5}=-\frac{1}{2}\left[\begin{array}{ll}
0 & 0 \\
0 & \mathbb{I}
\end{array}\right]
$$

