

Nucleon axial form factors from two-flavour Lattice QCD

Parikshit Junnarkar Helmholtz Institut Mainz

In Collaboration with:

S. Capitani, D. Djukanovic, G. von Hippel, J. Hua, B. Jäger, H. Meyer, T.D Rae, H. Wittig

Outline

- Structure of the axial matrix elements of nucleon
- Lattice calculation of axial matrix elements
- Extraction of Form factors
 - Plateau method
 - Summation method
 - Excited state ansatz
- * Results on $G_A(Q^2)$, $\langle r_A^2 \rangle$
- * Results on $G_P(Q^2)$
- Conclusions

Axial structure of the Nucleon

From Lorenz invariance, CPT and Isospin symmetry,

$$\langle N, \mathbf{p}' | A^{\mu}(x) | N, \mathbf{p} \rangle = e^{iq \cdot x} \bar{u}(\mathbf{p}') \left(\gamma^{\mu} \gamma^5 G_A(q^2) + \gamma^5 \frac{q^{\mu}}{2m} G_P(q^2) \right) u(\mathbf{p})$$

Axial structure strongly influenced by chiral symmetry breaking,

 $g_A/g_V = 1.2701(25)$ Ref: PDG 2012

$$Q^{2} \sim 1 \text{ GeV}^{2}$$

$$G_{A} \approx \frac{g_{A}}{\left(1 + \frac{Q^{2}}{M_{A}^{2}}\right)^{2}} \qquad \langle r_{A}^{2} \rangle = -\frac{6}{G_{A}(0)} \frac{\mathrm{d}G_{A}(Q^{2})}{\mathrm{d}Q^{2}}\Big|_{Q^{2}=0}$$

Axial structure of the Nucleon

$$\Delta M_A = 0.043 \pm 0.026 \text{ GeV}$$

Bernard, Elouadrhiri, Meißner J.Phys. G28 (2002) R1-R35

Nucleon matrix elements on the Lattice

- Standard Nucleon operator with covariant gaussian smearing at source and sink.
- * Sequential inversion with fixed sink and momentum injected at the operation insertion.

$$C_3 \sim \frac{e^{-E_q t}}{2E_q} \frac{e^{-m(ts-t)}}{2m} \operatorname{Tr}[\Gamma_{\alpha\beta} \langle N, -\vec{p}, s | A^{\mu} | N, \vec{0}, s' | \rangle_{\alpha\beta}]$$

* Calculation performed at several t_s , quark masses and volumes

CLS Ensembles

 $N_f = 2$ non-perturbatively $\mathcal{O}(a)$ improved gauge configurations

Run	β	<i>a</i> [fm]	L	т	<i>L</i> [fm]	т	N
A3	5.2	0.079	32	473	2.5	6	2128
A4				363	2.5	4.7	3200
A5				312	2.5	4	4000
<i>B6</i>			48	262	3.8	5	2544
E5	5.3	0.063	32	451	2	4.7	4000
F6			48	324	3	5	3600
F7				277	3	4.2	3000
<u>G8</u>			64	195	4	4	4176
N5	5.5	0.05	48	430	2.4	5.2	1908
N6				340	2.4	4	3784
07			64	270	3.2	4.4	1960

Coordinated Lattice Simulations [<u>https://twiki.cern.ch/twiki/bin/view/CLS/WebHome</u>]

Issues in Form factor Extraction

* Matrix elements extracted from conveniently defined ratio as,

$$R_{A_{\mu}} = \frac{C_{3,A_{\mu}}(\vec{q},t,t_s)}{C_2(\vec{q},t,t_s)} \sqrt{\frac{C_2(\vec{q},t,t_s-t)}{C_2(\vec{0},t,t_s-t)}} \frac{C_2(\vec{0},t)}{C_2(\vec{q},t)} \frac{C_2(\vec{0},t_s)}{C_2(\vec{q},t)}$$

$$R_{A_3} = \frac{i}{\sqrt{2E_q(m+E_q)}} \left((m+E_q)G_A(q^2) - \frac{G_P(q^2)}{2m}q_3^2 \right)$$

* As $m_{\pi} \rightarrow m_{\pi phys}$, systematic effects need to addressed.

- * Chiral extrapolation to physical quark mass
- Finite Volume and lattice spacing effects
- * Excited state contributions (as shown in G. von Hippel's Talk)
 - * At finite Q^2 , significant impact on form factors.

Methods of Form factor Extraction

- Plateau method
 - * Fit the largest t_s to a constant plateau.
- Summed operator insertions Summation method

$$S(t_s) = \sum_{t=0}^{t_s} R(\vec{q}, t, t_s) \to C(\Delta, \Delta') + t_s(G + \mathcal{O}(e^{-\Delta t_s}) + \mathcal{O}(e^{-\Delta' t_s}))$$

* Explicit excited state ansatz,

$$\bar{g}_{A,eff}(t_s) = g_A + C_1 e^{-\Delta t_s}$$

$$G_{X,eff}(Q^2;t,t_s) = G_X(Q^2) + C_1 e^{-\Delta t} + C_2 e^{-\Delta'(t_s-t)}$$

with assumptions for gap and individual and simultaneous t_s fits.

[arXiv:1311.5804], Phys.Rev. D86 (2012) 074502

Axial charge

Excited State fits

Summation method results

Effect of removal of lowest t_s on extraction of $G_A(Q^2)$

Consistent results albeit with higher uncertainties

Summation method results

Effect of addition of ts = 25 on extraction of $G_A(Q^2)$

Excited state fit results

Effect of removal of lowest t_s on extraction of $G_A(Q^2)$

 $G_{X,eff}(Q^2;t,t_s) = G_X(Q^2) + C_1 e^{-\Delta t} + C_2 e^{-\Delta'(t_s-t)}$

Excited state fit results

Effect of addition of ts = 25 on extraction of $G_A(Q^2)$

Consistent results albeit with pronounced effects

Axial radius of nucleon

$$\langle N, \mathbf{p}' | A^{\mu}(x) | N, \mathbf{p} \rangle = e^{iq \cdot x} \bar{u}(\mathbf{p}') \left(\gamma^{\mu} \gamma^5 G_A(q^2) + \gamma^5 \frac{q^{\mu}}{2m} G_P(q^2) \right) u(\mathbf{p})$$

$$\langle N, \mathbf{p}' | A^{\mu}(x) | N, \mathbf{p} \rangle = e^{iq \cdot x} \bar{u}(\mathbf{p}') \left(\gamma^{\mu} \gamma^5 G_A(q^2) + \gamma^5 \frac{q^{\mu}}{2m} G_P(q^2) \right) u(\mathbf{p})$$

Chiral symmetry breaking and PCAC constrain structure to pion pole

$$G_{P}(Q^{2}) = G_{A}(Q^{2}) \frac{2M_{N}}{Q^{2} + m_{\pi}^{2}}$$

Experimentally measured in muon
capture by proton

$$g_{P} \equiv \frac{m_{\mu}}{2M_{N}}G_{P}(Q^{2} = -0.88m_{\mu}^{2})$$

$$\int_{0}^{20} \frac{100}{0} \int_{0}^{0} \frac{100$$

Conclusions

* For the case of *gA*, summation method can identify the ground state of the matrix element where the plateau can be misleading.

- Preliminary results for axial form factor show varying excited state contributions at different momentum transfers.
 - * Preliminary results show excited state contributions to $\langle r_A^2 \rangle$ hidden by statistics.

* Large excited state contributions to $G_P(Q^2)$ are observed and it remains under investigation.

Thank You

Backup Slides

Individual excited state fits

N6, $\beta = 5.5$, $m_{\pi} = 340 \text{MeV}$, L = 2.4 fm, $Q^2 = 0.7 \text{GeV}^2$

Individual excited state fits

N6,
$$\beta$$
=5.5, m_{π} =340MeV, L =2.4fm, Q^2 =0.25GeV²
17
16
16
16
17
16
17
14

 $G_P(Q^2)$