Glueball masses in $2+1$ dimensional $\operatorname{SU}(N)$ gauge theories with twisted boundary conditions

Mateusz Koreń
Instituto de Física Teórica UAM-CSIC, Madrid

In collaboration with Margarita García Peréz, Antonio González-Arroyo and Masanori Okawa

Lattice 2014, NYC, 27-06-2014

Table of contents

(1) Introduction
(2) Calculation
(3) Results

Statement of the problem \& notation

- Problem: calculate glueball masses in pure gauge $S U(N)$ theory on spatial two-torus of size L with twisted boundary conditions.
- For numerical investigation: lattice model with Wilson action, periodic b.c. in time:

$$
S=N b \sum_{n \in \mathbb{Z}_{(L, L, T)}^{3}} \sum_{\mu \neq \nu}\left(N-z_{\mu \nu}^{*}(n) P_{\mu \nu}(n)\right),
$$

where $z_{\mu \nu}(n)=\exp \left(i \epsilon_{i j} \frac{2 \pi k}{N}\right)$ at corner plaquettes in each (1,2)-plane, and 1 everywhere else.

- Inverse 't Hooft coupling: $b=1 / g^{2} N$
- Integer \bar{k} defined as: $k \bar{k}=1(\bmod N)$

Motivation

Garcia-Perez, Gonzalez-Arroyo, Okawa, 13, 14:

- Electric flux energies (calculated from Polyakov loop correlators) in the theory only depend on NL and twist parameters.

Motivation

Garcia-Perez, Gonzalez-Arroyo, Okawa, 13, 14:

- Electric flux energies (calculated from Polyakov loop correlators) in the theory only depend on NL and twist parameters.
- More precisely: on $x=\frac{N L}{4 \pi b}$ and $\tilde{\theta}=\frac{2 \pi \bar{k}}{N}$
- Shown in perturbation theory to all orders, and also by lattice simulations in wide range of b.
- Can avoid tachyonic instabilities by keeping $k, \bar{k} \propto N$, just as in Twisted Eguchi-Kawai model (Gonzalez-Arroyo, Okawa, 10)
- Can be thought of as a strong form of TEK-like volume independence, also valid for finite N.

What we calculate

- Goal (long term): verify if this result holds also in the zero electric flux (glueball) sector.
- Goal (for this talk): calculate the mass of the lightest 0^{++} glueball as a function of b, for 2 different values of N.
- We take two theories chosen so that $L N$ and $\tilde{\theta}$ are close:
(1) $N=5, L=14, \bar{k}=2(N L=70, \tilde{\theta} \approx 2.513)$
(2) $N=17, L=4, \bar{k}=7(N L=68, \tilde{\theta} \approx 2.587)$

What we calculate

- Goal (long term): verify if this result holds also in the zero electric flux (glueball) sector.
- Goal (for this talk): calculate the mass of the lightest 0^{++} glueball as a function of b, for 2 different values of N.
- We take two theories chosen so that $L N$ and $\tilde{\theta}$ are close:
(1) $N=5, L=14, \bar{k}=2(N L=70, \tilde{\theta} \approx 2.513)$
(2) $N=17, L=4, \bar{k}=7(N L=68, \tilde{\theta} \approx 2.587)$
- Knowledge from earlier works:
- $x \lesssim 0.5$ ($b \gtrsim 10$) - perturbative, small volume region
- $0.5 \lesssim x \lesssim 4(1.5 \lesssim b \lesssim 10)$ - intermediate region
- $x \gtrsim 4$ ($b \lesssim 1.5$) - large volume region

Intent: probe glueball mass in all 3 regions.

How we calculate

- Use correlations of rectangular Wilson loops and moduli of multi-winding Polyakov loops $\left|\operatorname{Tr} P^{n}\right|^{2}$
- Use 3 different levels of smearing and large loops, trying to follow the physical size of the glueball (including loops larger than L for small and moderate x)
- Construct: $C_{i j}(t)=\sum_{t^{\prime}}\left\langle O_{i}\left(t^{\prime}+t\right) O_{j}\left(t^{\prime}\right)\right\rangle-\left\langle O_{i}\left(t^{\prime}+t\right)\right\rangle\left\langle O_{j}\left(t^{\prime}\right)\right\rangle$

How we calculate

$C_{R R}(4)$ is the (normalized) correlator of $W(R, R)$ at distance 4 lattice sites,

$$
N=5, L=14, \bar{k}=2
$$

How we calculate

- Use correlations of rectangular Wilson loops and moduli of multi-winding Polyakov loops $\left|\operatorname{Tr} P^{n}\right|^{2}$
- Use 3 different levels of smearing and large loops, trying to follow the physical size of the glueball (including loops larger than L for small and moderate x)
- Construct: $C_{i j}(t)=\sum_{t^{\prime}}\left\langle O_{i}\left(t^{\prime}+t\right) O_{j}\left(t^{\prime}\right)\right\rangle-\left\langle O_{i}\left(t^{\prime}+t\right)\right\rangle\left\langle O_{j}\left(t^{\prime}\right)\right\rangle$
- Do GEVP:

$$
C\left(t_{1}\right) v=C\left(t_{0}\right) \lambda v
$$

to find v, use them to change the basis $C(t) \rightarrow \tilde{C}(t) \forall t$ and fit to diagonal elements of $\tilde{C}(t)$ (after finding the plateau)

- Technicalities: use ≈ 12 operators for $C_{i j}(t)$, estimate if basis allows reliable GEVP by first solving it on non-symmetrized $C(t)$, use quad precision for GEVP and basis change

Results: caveat

Beware: results preliminary, all errors only statistical.

Results: example mass plateau

Effective mass plateau for $N=5, L=14, \bar{k}=2, b=2(x=2.8)$, Nmeas $=10^{5}$

Results: example mass plateau

Effective mass plateau for $N=5, L=14, \bar{k}=2, b=2(x=2.8)$, Nmeas $=10^{5}$

Results: scan in x

The theoretical expectations

Results: scan in x

The results for both theories, note the results for doubled L in the large x region.

Results: scan in x

The results for both theories, note the results for doubled L in the large x region.

Conclusions \& outlook

- Extracted 0^{++}glueball mass in large range of couplings with constant lattice size L for $N=5$ and $N=17$ with matching $N L$ and electric flux $\tilde{\theta}$.
- Large volume region under good control, small volume still needs improved analysis.
- $N=5$ and $N=17$ data in good agreement, as expected by the x-scaling hypothesis!

Conclusions \& outlook

- Extracted 0^{++}glueball mass in large range of couplings with constant lattice size L for $N=5$ and $N=17$ with matching $N L$ and electric flux $\tilde{\theta}$.
- Large volume region under good control, small volume still needs improved analysis.
- $N=5$ and $N=17$ data in good agreement, as expected by the x-scaling hypothesis!

TODO list:

- Get the systematics right, especially in the small-x region autocorrelations, replicas, larger T, other operators?
- Add other quantum numbers, especially 2^{++}.
- Investigate other \bar{k} values.

Conclusions \& outlook

- Extracted 0^{++}glueball mass in large range of couplings with constant lattice size L for $N=5$ and $N=17$ with matching $N L$ and electric flux $\tilde{\theta}$.
- Large volume region under good control, small volume still needs improved analysis.
- $N=5$ and $N=17$ data in good agreement, as expected by the x-scaling hypothesis!

TODO list:

- Get the systematics right, especially in the small-x region autocorrelations, replicas, larger T, other operators?
- Add other quantum numbers, especially 2^{++}.
- Investigate other \bar{k} values.

Thank you for your attention!

