Glueball masses in 2+1 dimensional SU(N) gauge theories with twisted boundary conditions

Mateusz Koreń

Instituto de Física Teórica UAM-CSIC, Madrid

In collaboration with Margarita García Peréz, Antonio González-Arroyo and Masanori Okawa

Lattice 2014, NYC, 27-06-2014

伺い イヨト イヨト

Table of contents

- 4 回 ト 4 回 ト 4 回 ト

E

Intro	luction
0	

Statement of the problem & notation

- Problem: calculate glueball masses in pure gauge SU(N) theory on spatial two-torus of size *L* with twisted boundary conditions.
- For numerical investigation: lattice model with Wilson action, periodic b.c. in time:

$$S = Nb \sum_{n \in \mathbb{Z}^3_{(L,L,T)}} \sum_{\mu \neq \nu} (N - z^*_{\mu\nu}(n)P_{\mu\nu}(n)),$$

where $z_{\mu\nu}(n) = \exp(i\epsilon_{ij}\frac{2\pi k}{N})$ at corner plaquettes in each (1,2)-plane, and 1 everywhere else.

- Inverse 't Hooft coupling: $b = 1/g^2 N$
- Integer \bar{k} defined as: $k\bar{k} = 1 \pmod{N}$

向下 イヨト イヨト

Motivation

Garcia-Perez, Gonzalez-Arroyo, Okawa, 13, 14:

• Electric flux energies (calculated from Polyakov loop correlators) in the theory only depend on *NL* and twist parameters.

(4 回) (4 回) (4 回)

Motivation

Garcia-Perez, Gonzalez-Arroyo, Okawa, 13, 14:

- Electric flux energies (calculated from Polyakov loop correlators) in the theory only depend on *NL* and twist parameters.
- More precisely: on $x = \frac{NL}{4\pi b}$ and $\tilde{\theta} = \frac{2\pi \bar{k}}{N}$
- Shown in perturbation theory to all orders, and also by lattice simulations in wide range of *b*.
- Can avoid tachyonic instabilities by keeping $k, \bar{k} \propto N$, just as in Twisted Eguchi-Kawai model (Gonzalez-Arroyo, Okawa, 10)
- Can be thought of as a strong form of TEK-like volume independence, also valid for finite *N*.

イロト イポト イヨト イヨト

Introd	uction

What we calculate

- Goal (long term): verify if this result holds also in the zero electric flux (glueball) sector.
- Goal (for this talk): calculate the mass of the lightest 0^{++} glueball as a function of *b*, for 2 different values of *N*.
- We take two theories chosen so that LN and $\tilde{\theta}$ are close:

1
$$N = 5, L = 14, \bar{k} = 2 (NL = 70, \tilde{\theta} \approx 2.513)$$

②
$$N=17, L=4, ar{k}=7~(NL=68, ar{ heta}pprox 2.587)$$

向下 イヨト イヨト

What we calculate

- Goal (long term): verify if this result holds also in the zero electric flux (glueball) sector.
- Goal (for this talk): calculate the mass of the lightest 0⁺⁺ glueball as a function of *b*, for 2 different values of *N*.
- We take two theories chosen so that LN and $\tilde{\theta}$ are close:

1
$$N = 5, L = 14, \bar{k} = 2 (NL = 70, \tilde{\theta} \approx 2.513)$$

②
$$N=17,~L=4,~ar{k}=7~(NL=68,~ ilde{ heta}pprox 2.587)$$

- Knowledge from earlier works:
 - $x \lesssim$ 0.5 ($b \gtrsim$ 10) perturbative, small volume region
 - + 0.5 $\lesssim x \lesssim$ 4 (1.5 $\lesssim b \lesssim$ 10) intermediate region
 - $x\gtrsim$ 4 ($b\lesssim$ 1.5) large volume region

Intent: probe glueball mass in all 3 regions.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introd	uction

How we calculate

- \bullet Use correlations of rectangular Wilson loops and moduli of multi-winding Polyakov loops $|{\rm Tr}\, P^n|^2$
- Use 3 different levels of smearing and large loops, trying to follow the physical size of the glueball (including loops larger than *L* for small and moderate *x*)
- Construct: $C_{ij}(t) = \sum_{t'} \langle O_i(t'+t)O_j(t') \rangle \langle O_i(t'+t) \rangle \langle O_j(t') \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト

Results

How we calculate

 $C_{RR}(4)$ is the (normalized) correlator of W(R, R) at distance 4 lattice sites, $N = 5, L = 14, \bar{k} = 2.$

<ロト <回ト < 回ト < 回ト

How we calculate

- \bullet Use correlations of rectangular Wilson loops and moduli of multi-winding Polyakov loops $|{\rm Tr}\, P^n|^2$
- Use 3 different levels of smearing and large loops, trying to follow the physical size of the glueball (including loops larger than *L* for small and moderate *x*)
- Construct: $C_{ij}(t) = \sum_{t'} \langle O_i(t'+t)O_j(t') \rangle \langle O_i(t'+t) \rangle \langle O_j(t') \rangle$
- Do GEVP:

$$C(t_1)v = C(t_0)\lambda v$$

to find v, use them to change the basis $C(t) \rightarrow \tilde{C}(t) \forall t$ and fit to diagonal elements of $\tilde{C}(t)$ (after finding the plateau)

• Technicalities: use ≈ 12 operators for $C_{ij}(t)$, estimate if basis allows reliable GEVP by first solving it on *non-symmetrized* C(t), use quad precision for GEVP and basis change

(4月) (3日) (3日) 日

Results: caveat

Beware: results preliminary, all errors only statistical.

Results ○●○○

Results: example mass plateau

Effective mass plateau for $N = 5, L = 14, \overline{k} = 2, b = 2$ (x = 2.8), Nmeas = 10^5

Introduction

Calculation

Results ○●○○

Results: example mass plateau

Effective mass plateau for $N = 5, L = 14, \overline{k} = 2, b = 2$ (x = 2.8), Nmeas = 10⁵

Results ○○●○

Results: scan in x

Results: scan in x

The results for both theories, note the results for doubled L in the large x region.

<ロト <回ト < 回ト < 回ト

3

Results: scan in x

The results for both theories, note the results for doubled L in the large x region.

<ロト <回ト < 回ト < 回ト

Introd	uction

Conclusions & outlook

- Extracted 0⁺⁺ glueball mass in large range of couplings with constant lattice size *L* for N = 5 and N = 17 with matching *NL* and electric flux $\tilde{\theta}$.
- Large volume region under good control, small volume still needs improved analysis.
- N = 5 and N = 17 data in good agreement, as expected by the x-scaling hypothesis!

向下 イヨト イヨ

Conclusions & outlook

- Extracted 0⁺⁺ glueball mass in large range of couplings with constant lattice size *L* for N = 5 and N = 17 with matching *NL* and electric flux $\tilde{\theta}$.
- Large volume region under good control, small volume still needs improved analysis.
- N = 5 and N = 17 data in good agreement, as expected by the x-scaling hypothesis!

TODO list:

- Get the systematics right, especially in the small-x region autocorrelations, replicas, larger T, other operators?
- Add other quantum numbers, especially 2^{++} .
- Investigate other \bar{k} values.

Introdu	uction

Conclusions & outlook

- Extracted 0⁺⁺ glueball mass in large range of couplings with constant lattice size L for N = 5 and N = 17 with matching NL and electric flux $\tilde{\theta}$.
- Large volume region under good control, small volume still needs improved analysis.
- N = 5 and N = 17 data in good agreement, as expected by the x-scaling hypothesis!

TODO list:

- Get the systematics right, especially in the small-x region autocorrelations, replicas, larger T, other operators?
- Add other quantum numbers, especially 2^{++} .
- Investigate other \bar{k} values.

Thank you for your attention!