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Introduction

Motivation

Connection between "lattice world" and "real world":
renormalization constants Z
Must know them as accurate as possible
Nonperturbative approach: widely used scheme is RI′ −MOM

Z−1
O (p) = Z−1

q (p)
1
12

tr
(

ΓO(p)Γ−1
Born,O(p)

)
Zq(p) =

tr(−i
∑

λ γλ sin(apλ)aS−1(p))

12
∑

λ sin2(apλ)
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Introduction

Motivation

Simulations with dynamical fermions: vertex function ΓO(p) can
contain disconnected contributions
Three-point functions and disconnected contributions: technically
very demanding
Alternative approach: Feynman-Hellmann (FH) method which
needs two-point functions only - at the expense of modified actions
We present first results for the local operators O = A3,S
Setting: 323 × 64 lattice, β = 5.5, Nf = 3, a = 0.074(2) fm, 8
momentum tuples, 9 configurations/tuple
Axial vector operator: κ = 0.12090
Scalar operator: κ = 0.12099,0.12095,0.12092
Action: SLiNC fermions with tree-level improved Symanzik gluons
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Feynman-Hellmann - inclusion of disconnected contributions

FH method I

Modified action (κu = κd = κs = κsea)

Smod(λsea) = SG(U) +
∑

q

ψq M(κsea)ψq − λsea
∑

q

ψq Oψq

Modified propagator Smod
ij from the fermion matrix (after integration

over the fermion fields)
Smod

ij (λsea, λval) =∫
DU (M(κval)− λvalO)−1

ij det (M(κsea)− λseaO)Nf exp [−SG(U)]∫
DU det (M(κsea)− λseaO)Nf exp [−SG(U)]

= 〈(M − λvalO)−1
ij 〉λsea
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Feynman-Hellmann - inclusion of disconnected contributions

FH method II

Expanding to first order in both λ’s (κval = κsea)

Smod
ij (λsea, λval) = 〈(M)−1

ij 〉+ λval 〈(M−1OM−1)ij〉−

Nfλsea

{
〈(M)−1

ij Tr[OM−1]〉 − 〈(M)−1
ij 〉〈Tr[OM−1]〉

}
+ O(λ2)

Expectation values 〈. . . 〉 are taken for λsea = 0
∂

∂λval
→ connected contributions

∂
∂λsea

→ disconnected contributions
Obtain three-point function (e.g., singlet case)

∂

∂ λ
Smod(λ, λ)

∣∣∣
λ=0

= 〈M−1OM−1 〉+ Nf {. . . } = G conn.+disc.
O

Amputated vertex Green function with unmodified propagator
S0 = Smod(0,0)

ΓO = S−1
0 GO S−1

0
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Feynman-Hellmann - inclusion of disconnected contributions

FH method III

Need for a sufficient good numerical approximation of ∂
∂ λ Smod

∣∣∣
λ=0

At least two values of parameter λ, detailed investigations in
[CSSM/QCDSF/UKQCD-collaboration, arXiv:1405.3019, 2014, cf. also
talk of J. Zanotti]

With a reasonable choice of the λ values we compute

GO(p) ≈ 1
∆λ

[
Smod(λ2; p)− Smod(λ1; p)

]
, ∆λ = λ2 − λ1

The Z factor computed is in the RI′ −MOM scheme→
transformation to RGI and MS
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Axial vector operator A3

Axial vector A3

Amputated Born Green function: ΓBorn,A3 = ıγ5γ3

Values for λ:
non-singlet case: λval = (0,0.0125), λsea = 0
singlet case: λval = λsea = (0.00625,0.0125)
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Figure: The non-singlet (NS) and singlet (S) renormalization factors ZA. Fit
range for RGI: (2 < (ap)2 < 10)
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Axial vector operator A3

Check: derivative

Realiability of the numerical approximation of ∂
∂ λ Smod

∣∣∣
λ=0

For the singlet case we have the additional point λval = λsea = 0
If 1/12 tr(S−1

0 Smod(λi , λi ; p)S−1
0 Γ−1

Born) (i = 1,2,3) on a straight line
(negligible O(λ2))
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Figure: 1/12 tr(S−1
0 Smod(λi , λi ; p)S−1

0 Γ−1
Born) for three different λ values

together with a linear fit at (ap)2 = 3.855.
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Axial vector operator A3

Check: non-singlet

Non-singlet case: comparison with standard three-point approach
Comparison with new results of [Cyprus/CSSM/QCDSF/UKQCD,
2014]
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Figure: Comparison of the non-singlet Z factors calculated with the FH
method (Z NS

A,FH) and via the three-point function (Z NS
A,3−point).
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Axial vector operator A3

RGI

In order to transform to RGI use intermediate scheme (MOM)
γA(non − singlet) = 0 , γA(singlet) 6= 0 → momentum
dependence for singlet case
After performing the transformation the remaining (ap)2

dependence is parametrized as

Z RGI
data = Z RGI + c1(ap)2 + c2

(
(ap)2

)2

Fit range: 2 < (ap)2 < 10
Results:
Z RGI

A,NS = 0.847(2)

Z RGI,3−point
A,NS = 0.849(8) [Cyprus/CSSM/QCDSF/UKQCD, 2014]

Z RGI
A,S = 0.861(9)
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Axial vector operator A3

MS

In order to transform to MS:

Z MS
A = Z RGI

A /∆Z MS
A

Results:
Z MS

A,NS = Z RGI
A,NS = 0.847(2)
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Axial vector operator A3

MS

In order to transform to MS:

Z MS
A = Z RGI

A /∆Z MS
A

Results:
Z MS

A,NS = Z RGI
A,NS = 0.847(2)

Z MS
A,S = 0.802(8) at p2 = 4 GeV2
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Axial vector operator A3

Ratio NS/S
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Figure: The ratio Z MS
A,NS/Z

MS
A,S.

The ratio is close to 1 - supported by LPT: the difference between the
non-singlet and singlet Z factors starts at two-loop only and is very
small [cf. talk of H. Panagopoulos]
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Scalar operator S

Scalar operator S

Scalar operator coupling λ ψ̄ 1ψ ↔ m ψ̄ ψ

Mass term serves as coupling term of the scalar operator
Partially quenched quarks→ non-singlet case
Unitary quarks→ singlet case
∂
∂λ →

∂
∂m (↔ ∂

∂κ)

We use the κ values (0.12099,0.12095,0.12092)
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Scalar operator S

Non-singlet case checked with three point function approach
[Cyprus/CSSM/QCDSF/UKQCD, 2014]
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Feynman-Hellman method and from the three-point function.
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Scalar operator S

RGI and MS results

RGI results:
Z RGI

S,NS = 0.549(5)

Z RGI,3−point
S,NS = 0.552(4) [Cyprus/CSSM/QCDSF/UKQCD, 2014]

Z RGI
S,S = 0.246(19)

MS results at p2 = 4 GeV2:
Z MS

S,NS = 0.740(7)

Z MS,3−point
S,NS = 0.736(53) [Cyprus/CSSM/QCDSF/UKQCD, 2014]

Z MS
S,S = 0.332(26)
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Scalar operator S

Ratio NS/S
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Figure: Non-singlet and singlet renormalization factors for the scalar operator
in the MS scheme.

The ratio is 2.23(18) for RGI and MS
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Summary

Summary

Presented Feynman-Hellman method for nonperturbative
calculation of renormalization factors
FH makes use of two-point functions→ better signals
Additional action are needed
Straightforward inclusion of disconnected contributions→ singlet
operators
First results for axial vector and scalar operators
Even with very few configurations encouraging results
Future steps: improved operators, improved statistics, additional
operators
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