A Feynman-Hellmann approach to nonperturbative renormalization of lattice operators

A. J. Chambers¹, R. Horsley², Y. Nakamura³, H. Perlt⁴, P. E. L. Rakow⁵, G. Schierholz⁶, A. Schiller⁴, R. D. Young¹ and J. M. Zanotti¹ CSSM/QCDSF/UKQCD collaborations

¹University of Adelaide, ²University of Edinburgh, ³RIKEN, Kobe, ⁴Universität Leipzig, ⁵University of Liverpool, ⁶DESY

Lattice 2014, New York, USA, June 23 - June 28, 2014

Introduction

- 2 Feynman-Hellmann inclusion of disconnected contributions
- 3 Axial vector operator A₃
- Scalar operator S

Talk H. Perlt (Leipzig)

5 Summary

Introduction

2 Feynman-Hellmann - inclusion of disconnected contributions

3 Axial vector operator A₃

Scalar operator S

Talk H. Perlt (Leipzig)

5 Summary

Introduction

2 Feynman-Hellmann - inclusion of disconnected contributions

Axial vector operator A₃

Scalar operator S

Talk H. Perlt (Leipzig)

5 Summary

Introduction

2 Feynman-Hellmann - inclusion of disconnected contributions

- Axial vector operator A₃
 - Scalar operator S

Talk H. Perlt (Leipzig)

5 Summary

• □ > • □ > • □ > •

Introduction

2 Feynman-Hellmann - inclusion of disconnected contributions

Axial vector operator A₃

Scalar operator S

• □ ▶ • □ ▶ • □ ▶

Motivation

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Nonperturbative approach: widely used scheme is RI' MOM

$$Z_{\mathcal{O}}^{-1}(p) = Z_{q}^{-1}(p) \frac{1}{12} \operatorname{tr} \left(\Gamma_{\mathcal{O}}(p) \Gamma_{\operatorname{Born}, \mathcal{O}}^{-1}(p) \right)$$
$$Z_{q}(p) = \frac{\operatorname{tr}(-i \sum_{\lambda} \gamma_{\lambda} \sin(ap_{\lambda}) a S^{-1}(p))}{12 \sum_{\lambda} \sin^{2}(ap_{\lambda})}$$

Talk H. Perlt (Leipzig)

▲ □ ▶ ▲ □ ▶ ▲

Motivation

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Nonperturbative approach: widely used scheme is RI' MOM

$$Z_{\mathcal{O}}^{-1}(p) = Z_{q}^{-1}(p) \frac{1}{12} \operatorname{tr} \left(\Gamma_{\mathcal{O}}(p) \Gamma_{\operatorname{Born}, \mathcal{O}}^{-1}(p) \right)$$
$$Z_{q}(p) = \frac{\operatorname{tr}(-i \sum_{\lambda} \gamma_{\lambda} \sin(ap_{\lambda}) a S^{-1}(p))}{12 \sum_{\lambda} \sin^{2}(ap_{\lambda})}$$

Talk H. Perlt (Leipzig)

・ 同 ト ・ ヨ ト ・ ヨ

Motivation

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Nonperturbative approach: widely used scheme is RI' MOM

$$Z_{\mathcal{O}}^{-1}(p) = Z_{q}^{-1}(p) \frac{1}{12} \operatorname{tr} \left(\Gamma_{\mathcal{O}}(p) \Gamma_{\operatorname{Born}, \mathcal{O}}^{-1}(p) \right)$$
$$Z_{q}(p) = \frac{\operatorname{tr}(-i \sum_{\lambda} \gamma_{\lambda} \sin(ap_{\lambda}) a S^{-1}(p))}{12 \sum_{\lambda} \sin^{2}(ap_{\lambda})}$$

A (1) > A (2) >

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLiNC fermions with tree-level improved Symanzik gluons

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLiNC fermions with tree-level improved Symanzik gluons

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLiNC fermions with tree-level improved Symanzik gluons

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLiNC fermions with tree-level improved Symanzik gluons

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLiNC fermions with tree-level improved Symanzik gluons

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLiNC fermions with tree-level improved Symanzik gluons

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLINC fermions with tree-level improved Symanzik gluons

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- Simulations with dynamical fermions: vertex function Γ_O(p) can contain disconnected contributions
- Three-point functions and disconnected contributions: technically very demanding
- Alternative approach: Feynman-Hellmann (FH) method which needs two-point functions only - at the expense of modified actions
- We present first results for the local operators $\mathcal{O} = A_3, S$
- Setting: $32^3 \times 64$ lattice, $\beta = 5.5$, $N_f = 3$, a = 0.074(2) fm, 8 momentum tuples, 9 configurations/tuple
- Axial vector operator: $\kappa = 0.12090$
- Scalar operator: $\kappa = 0.12099, 0.12095, 0.12092$
- Action: SLINC fermions with tree-level improved Symanzik gluons

• Modified action (
$$\kappa_u = \kappa_d = \kappa_s = \kappa_{sea}$$
)

$$\mathcal{S}_{\mathrm{mod}}(\lambda_{\mathrm{sea}}) = \mathcal{S}_{G}(U) + \sum_{q} \overline{\psi}_{q} M(\kappa_{\mathrm{sea}}) \psi_{q} - \lambda_{\mathrm{sea}} \sum_{q} \overline{\psi}_{q} \mathcal{O} \psi_{q}$$

• Modified propagator S_{ij}^{mod} from the fermion matrix (after integration over the fermion fields) $S_{ij}^{\text{mod}}(\lambda_{\text{sea}}, \lambda_{\text{val}}) =$

$$\frac{\int DU (M(\kappa_{\text{val}}) - \lambda_{\text{val}} \mathcal{O})_{ij}^{-1} \det (M(\kappa_{\text{sea}}) - \lambda_{\text{sea}} \mathcal{O})^{N_f} \exp \left[-S_G(U)\right]}{\int DU \det (M(\kappa_{\text{sea}}) - \lambda_{\text{sea}} \mathcal{O})^{N_f} \exp \left[-S_G(U)\right]}$$
$$= \langle (M - \lambda_{\text{val}} \mathcal{O})_{ij}^{-1} \rangle_{\lambda_{\text{sea}}}$$

Talk H. Perlt (Leipzig)

• Modified action ($\kappa_u = \kappa_d = \kappa_s = \kappa_{sea}$)

$$\mathcal{S}_{\mathrm{mod}}(\lambda_{\mathrm{sea}}) = \mathcal{S}_{G}(U) + \sum_{q} \overline{\psi}_{q} M(\kappa_{\mathrm{sea}}) \psi_{q} - \lambda_{\mathrm{sea}} \sum_{q} \overline{\psi}_{q} \mathcal{O} \psi_{q}$$

Modified propagator S^{mod}_{ij} from the fermion matrix (after integration over the fermion fields)
 S^{mod}_{ji}(λ_{sea}, λ_{val}) =

$$\frac{\int DU \left(M(\kappa_{\text{val}}) - \lambda_{\text{val}} \mathcal{O}\right)_{ij}^{-1} \det \left(M(\kappa_{\text{sea}}) - \lambda_{\text{sea}} \mathcal{O}\right)^{N_f} \exp\left[-\mathcal{S}_G(U)\right]}{\int DU \det \left(M(\kappa_{\text{sea}}) - \lambda_{\text{sea}} \mathcal{O}\right)^{N_f} \exp\left[-\mathcal{S}_G(U)\right]}$$
$$= \langle \left(M - \lambda_{\text{val}} \mathcal{O}\right)_{ij}^{-1} \rangle_{\lambda_{\text{sea}}}$$

Talk H. Perlt (Leipzig)

< ロ > < 同 > < 三 > < 三 >

• Expanding to first order in both λ 's ($\kappa_{val} = \kappa_{sea}$)

$$\begin{split} \mathcal{S}_{ij}^{\text{mod}}(\lambda_{\text{sea}}, \lambda_{\text{val}}) &= \langle (M)_{ij}^{-1} \rangle + \lambda_{\text{val}} \langle (M^{-1} \mathcal{O} M^{-1})_{ij} \rangle - \\ \mathcal{N}_{f} \lambda_{\text{sea}} \left\{ \langle (M)_{ij}^{-1} \operatorname{Tr}[\mathcal{O} M^{-1}] \rangle - \langle (M)_{ij}^{-1} \rangle \langle \operatorname{Tr}[\mathcal{O} M^{-1}] \rangle \right\} + \mathcal{O}(\lambda^{2}) \end{split}$$

- Expectation values $\langle \dots \rangle$ are taken for $\lambda_{sea} = 0$
- $\frac{\partial}{\partial \lambda_{\text{val}}} \rightarrow \text{connected contributions}$
- $\frac{\partial}{\partial \lambda_{\text{sen}}} \rightarrow$ disconnected contributions
- Obtain three-point function (e.g., singlet case)

$$\frac{\partial}{\partial \lambda} S^{\mathrm{mod}}(\lambda,\lambda) \Big|_{\lambda=0} = \langle M^{-1} \mathcal{O} M^{-1} \rangle + N_f \{\dots\} = G_{\mathcal{O}}^{\mathrm{conn.+disc.}}$$

• Amputated vertex Green function with unmodified propagator $S_0 = S^{mod}(0, 0)$

$$\Gamma_{\mathcal{O}} = S_0^{-1} G_{\mathcal{O}} S_0^{-1}$$

Talk H. Perlt (Leipzig)

FH approach to Z factors

• Expanding to first order in both λ 's ($\kappa_{val} = \kappa_{sea}$)

$$\mathcal{S}^{ ext{mod}}_{ij}(\lambda_{ ext{sea}},\lambda_{ ext{val}}) = \langle (M)^{-1}_{ij}
angle + \lambda_{ ext{val}} \langle (M^{-1} \ \mathcal{O} \ M^{-1})_{ij}
angle -$$

$$N_{f}\lambda_{\text{sea}}\left\{\langle (\boldsymbol{M})_{ij}^{-1}\operatorname{Tr}[\mathcal{O}\boldsymbol{M}^{-1}]\rangle-\langle (\boldsymbol{M})_{ij}^{-1}\rangle\langle\operatorname{Tr}[\mathcal{O}\boldsymbol{M}^{-1}]\rangle\right\}+O(\lambda^{2})$$

- Expectation values $\langle \dots \rangle$ are taken for $\lambda_{sea} = \mathbf{0}$
- $\frac{\partial}{\partial \lambda_{val}} \rightarrow$ connected contributions
- $\frac{\partial}{\partial \lambda_{\text{sen}}} \rightarrow$ disconnected contributions
- Obtain three-point function (e.g., singlet case)

$$\frac{\partial}{\partial \lambda} S^{\mathrm{mod}}(\lambda,\lambda) \Big|_{\lambda=0} = \langle M^{-1} \mathcal{O} M^{-1} \rangle + N_f \{\dots\} = G_{\mathcal{O}}^{\mathrm{conn.+disc.}}$$

• Amputated vertex Green function with unmodified propagator $S_0 = S^{mod}(0, 0)$

$$\Gamma_{\mathcal{O}} = S_0^{-1} G_{\mathcal{O}} S_0^{-1}$$

Talk H. Perlt (Leipzig)

FH approach to Z factors

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Expanding to first order in both λ 's ($\kappa_{val} = \kappa_{sea}$)

$$S_{ij}^{\text{mod}}(\lambda_{\text{sea}}, \lambda_{\text{val}}) = \langle (M)_{ij}^{-1} \rangle + \lambda_{\text{val}} \langle (M^{-1} \mathcal{O} M^{-1})_{ij} \rangle - N_f \lambda_{\text{sea}} \left\{ \langle (M)_{ij}^{-1} \operatorname{Tr}[\mathcal{O} M^{-1}] \rangle - \langle (M)_{ij}^{-1} \rangle \langle \operatorname{Tr}[\mathcal{O} M^{-1}] \rangle \right\} + O(\lambda^2)$$

• Expectation values $\langle \dots \rangle$ are taken for $\lambda_{\text{sea}} = 0$

Figure: Fermion-line connected (left) and disconnected (right) contributions.

 $\begin{array}{c} \hline \partial \\ \partial \lambda_{\text{yel}} \end{array} \rightarrow \text{connected contributions} \\ \hline \textbf{Talk H. Pert (Leipzig)} & FH approach to Z factors & Lattice 2014 & 6/19 \\ \hline \end{array}$

• Expanding to first order in both λ 's ($\kappa_{val} = \kappa_{sea}$)

$$S_{ij}^{\text{mod}}(\lambda_{\text{sea}}, \lambda_{\text{val}}) = \langle (M)_{ij}^{-1} \rangle + \lambda_{\text{val}} \langle (M^{-1} \mathcal{O} M^{-1})_{ij} \rangle - \langle (M^{-1} \mathcal{O} M^{-$$

$$N_{f}\lambda_{\text{sea}}\left\{\langle (\boldsymbol{M})_{ij}^{-1}\operatorname{Tr}[\mathcal{O}\boldsymbol{M}^{-1}]\rangle-\langle (\boldsymbol{M})_{ij}^{-1}\rangle\langle \operatorname{Tr}[\mathcal{O}\boldsymbol{M}^{-1}]\rangle\right\}+O(\lambda^{2})$$

- Expectation values $\langle \dots \rangle$ are taken for $\lambda_{sea}=0$
- $\frac{\partial}{\partial \lambda_{\text{val}}} \rightarrow \text{connected contributions}$
- $\frac{\partial}{\partial \lambda_{\text{res}}} \rightarrow \text{disconnected contributions}$
- Obtain three-point function (e.g., singlet case)

$$\frac{\partial}{\partial \lambda} S^{\mathrm{mod}}(\lambda,\lambda) \Big|_{\lambda=0} = \langle M^{-1} \mathcal{O} M^{-1} \rangle + N_f \{\dots\} = G_{\mathcal{O}}^{\mathrm{conn.+disc.}}$$

• Amputated vertex Green function with unmodified propagator $S_0 = S^{mod}(0, 0)$

$$\Gamma_{\mathcal{O}} = S_0^{-1} G_{\mathcal{O}} S_0^{-1}$$

Talk H. Perlt (Leipzig)

FH approach to Z factors

• Expanding to first order in both λ 's ($\kappa_{val} = \kappa_{sea}$)

$$S_{ij}^{\mathrm{mod}}(\lambda_{\mathrm{sea}},\lambda_{\mathrm{val}}) = \langle (M)_{ij}^{-1} \rangle + \lambda_{\mathrm{val}} \langle (M^{-1} \mathcal{O} M^{-1})_{ij} \rangle -$$

$$N_{f}\lambda_{\text{sea}}\left\{\langle (M)_{ij}^{-1}\operatorname{Tr}[\mathcal{O}M^{-1}]\rangle - \langle (M)_{ij}^{-1}\rangle\langle \operatorname{Tr}[\mathcal{O}M^{-1}]\rangle\right\} + O(\lambda^{2})$$

- Expectation values $\langle \dots \rangle$ are taken for $\lambda_{sea} = \mathbf{0}$
- $\frac{\partial}{\partial \lambda_{\text{val}}} \rightarrow \text{connected contributions}$
- $\frac{\partial}{\partial \lambda_{\text{sea}}} \rightarrow \text{disconnected contributions}$
- Obtain three-point function (e.g., singlet case)

$$\frac{\partial}{\partial \lambda} S^{\mathrm{mod}}(\lambda,\lambda) \Big|_{\lambda=0} = \langle M^{-1} \mathcal{O} M^{-1} \rangle + N_f \{\dots\} = G_{\mathcal{O}}^{\mathrm{conn.+disc.}}$$

• Amputated vertex Green function with unmodified propagator $S_0 = S^{mod}(0, 0)$

$$\Gamma_{\mathcal{O}} = S_0^{-1} G_{\mathcal{O}} S_0^{-1}$$

Talk H. Perlt (Leipzig)

FH approach to Z factors

• Expanding to first order in both λ 's ($\kappa_{val} = \kappa_{sea}$)

$$S_{ij}^{\mathrm{mod}}(\lambda_{\mathrm{sea}},\lambda_{\mathrm{val}}) = \langle (M)_{ij}^{-1} \rangle + \lambda_{\mathrm{val}} \langle (M^{-1} \mathcal{O} M^{-1})_{ij} \rangle -$$

$$N_{f}\lambda_{\text{sea}}\left\{\langle (M)_{ij}^{-1}\operatorname{Tr}[\mathcal{O}M^{-1}]\rangle - \langle (M)_{ij}^{-1}\rangle\langle \operatorname{Tr}[\mathcal{O}M^{-1}]\rangle\right\} + O(\lambda^{2})$$

- Expectation values $\langle \dots \rangle$ are taken for $\lambda_{sea} = \mathbf{0}$
- $\frac{\partial}{\partial \lambda_{\text{val}}} \rightarrow \text{connected contributions}$
- $\frac{\partial}{\partial \lambda_{\text{sea}}} \rightarrow \text{disconnected contributions}$
- Obtain three-point function (e.g., singlet case)

$$\frac{\partial}{\partial \lambda} S^{\mathrm{mod}}(\lambda, \lambda) \Big|_{\lambda=0} = \langle M^{-1} \mathcal{O} M^{-1} \rangle + N_f \{ \dots \} = G_{\mathcal{O}}^{\mathrm{conn.+disc.}}$$

• Amputated vertex Green function with unmodified propagator $\mathcal{S}_0 = \mathcal{S}^{\mathrm{mod}}(0,0)$

$$\Gamma_{\mathcal{O}} = S_0^{-1} \ G_{\mathcal{O}} \ S_0^{-1}$$

・ロット (雪) (日) (日) (日)

• Need for a sufficient good numerical approximation of $\frac{\partial}{\partial \lambda} S^{\text{mod}}$

- At least two values of parameter λ, detailed investigations in [CSSM/QCDSF/UKQCD-collaboration, arXiv:1405.3019, 2014, cf. also talk of J. Zanotti]
- With a reasonable choice of the λ values we compute

$$G_{\mathcal{O}}(p) pprox rac{1}{\Delta\lambda} \left[S^{\mathrm{mod}}(\lambda_2; p) - S^{\mathrm{mod}}(\lambda_1; p)
ight], \Delta\lambda = \lambda_2 - \lambda_1$$

• The Z factor computed is in the RI' – MOM scheme \rightarrow transformation to RGI and $\overline{\text{MS}}$

- 4 B b

- Need for a sufficient good numerical approximation of $\frac{\partial}{\partial \lambda} S^{\mathrm{mod}}$
- At least two values of parameter λ, detailed investigations in [CSSM/QCDSF/UKQCD-collaboration, arXiv:1405.3019, 2014, cf. also talk of J. Zanotti]
- With a reasonable choice of the λ values we compute

$$G_{\mathcal{O}}(p) pprox rac{1}{\Delta\lambda} \left[S^{\mathrm{mod}}(\lambda_2; p) - S^{\mathrm{mod}}(\lambda_1; p)
ight], \ \Delta\lambda = \lambda_2 - \lambda_1$$

• The Z factor computed is in the RI' – MOM scheme \rightarrow transformation to RGI and $\overline{\text{MS}}$

- Need for a sufficient good numerical approximation of $\frac{\partial}{\partial \lambda} S^{\text{mod}}$
- At least two values of parameter λ, detailed investigations in [CSSM/QCDSF/UKQCD-collaboration, arXiv:1405.3019, 2014, cf. also talk of J. Zanotti]

$$G_{\mathcal{O}}(\boldsymbol{p}) pprox rac{1}{\Delta\lambda} \left[\boldsymbol{S}^{ ext{mod}}(\lambda_2; \boldsymbol{p}) - \boldsymbol{S}^{ ext{mod}}(\lambda_1; \boldsymbol{p})
ight], \ \Delta\lambda = \lambda_2 - \lambda_1$$

• The Z factor computed is in the RI' – MOM scheme \rightarrow transformation to RGI and $\overline{\text{MS}}$

- Need for a sufficient good numerical approximation of $\frac{\partial}{\partial \lambda} S^{mod} \Big|_{\chi}$
- At least two values of parameter λ, detailed investigations in [CSSM/QCDSF/UKQCD-collaboration, arXiv:1405.3019, 2014, cf. also talk of J. Zanotti]

$$G_{\mathcal{O}}(\boldsymbol{\rho}) pprox rac{1}{\Delta\lambda} \left[S^{\mathrm{mod}}(\lambda_2; \boldsymbol{\rho}) - S^{\mathrm{mod}}(\lambda_1; \boldsymbol{\rho})
ight], \Delta\lambda = \lambda_2 - \lambda_1$$

• The Z factor computed is in the RI' – MOM scheme \rightarrow transformation to RGI and MS

Axial vector A₃

• Amputated Born Green function: $\Gamma_{\text{Born},A_3} = i\gamma_5\gamma_3$

• Values for λ : non-singlet case: $\lambda_{val} = (0, 0.0125), \lambda_{sea} = 0$ singlet case: $\lambda_{val} = \lambda_{sea} = (0.00625, 0.0125)$

Axial vector A₃

- Amputated Born Green function: $\Gamma_{\text{Born},A_3} = \imath \gamma_5 \gamma_3$
- Values for λ : non-singlet case: $\lambda_{val} = (0, 0.0125), \lambda_{sea} = 0$ singlet case: $\lambda_{val} = \lambda_{sea} = (0.00625, 0.0125)$

Axial vector A₃

- Amputated Born Green function: $\Gamma_{\text{Born},A_3} = \imath \gamma_5 \gamma_3$
- Values for λ : non-singlet case: $\lambda_{val} = (0, 0.0125), \lambda_{sea} = 0$ singlet case: $\lambda_{val} = \lambda_{sea} = (0.00625, 0.0125)$

Figure: The non-singlet (NS) and singlet (S) renormalization factors Z_A . Fit range for RGI: $(2 < (ap)^2 < 10)$

Realiability of the numerical approximation of ∂∂λ S^{mod}|_{λ=0} For the singlet case we have the additional point λ_{val} = λ_{sea} = 0 If 1/12 tr(S₀⁻¹ S^{mod}(λ_i, λ_i; p)S₀⁻¹ Γ_{Born}⁻¹) (i = 1, 2, 3) on a straight line (negligible O(λ²))

< 同 > < 三 > <

- Realiability of the numerical approximation of $\frac{\partial}{\partial \lambda} S^{\text{mod}}\Big|_{\lambda=0}$
- For the singlet case we have the additional point $\lambda_{val} = \lambda_{sea} = 0$
- If 1/12 tr(S₀⁻¹S^{mod}(λ_i, λ_i; p)S₀⁻¹Γ_{Born}⁻¹) (i = 1, 2, 3) on a straight line (negligible O(λ²))

- 4 同 2 4 日 2 4 日 2

- Realiability of the numerical approximation of $\frac{\partial}{\partial \lambda} S^{\text{mod}}\Big|_{\lambda=0}$
- For the singlet case we have the additional point $\lambda_{val} = \lambda_{sea} = 0$
- If $1/12 \operatorname{tr}(S_0^{-1} S^{\text{mod}}(\lambda_i, \lambda_i; p) S_0^{-1} \Gamma_{\text{Born}}^{-1})$ (i = 1, 2, 3) on a straight line (negligible $O(\lambda^2)$)

- Realiability of the numerical approximation of $\frac{\partial}{\partial \lambda} S^{\text{mod}}\Big|_{\lambda=0}$
- For the singlet case we have the additional point $\lambda_{val} = \lambda_{sea} = 0$
- If $1/12 \operatorname{tr}(S_0^{-1} S^{\text{mod}}(\lambda_i, \lambda_i; p) S_0^{-1} \Gamma_{\text{Born}}^{-1})$ (i = 1, 2, 3) on a straight line (negligible $O(\lambda^2)$)

Figure: $1/12 \operatorname{tr}(S_0^{-1}S^{\text{mod}}(\lambda_i, \lambda_i; p)S_0^{-1}\Gamma_{\text{Born}}^{-1})$ for three different λ values together with a linear fit at $(ap)^2 = 3.855$.

Talk H. Perlt (Leipzig)
Check: non-singlet

• Non-singlet case: comparison with standard three-point approach

• Comparison with new results of [Cyprus/CSSM/QCDSF/UKQCD, 2014]

Check: non-singlet

- Non-singlet case: comparison with standard three-point approach
- Comparison with new results of [Cyprus/CSSM/QCDSF/UKQCD, 2014]

< D > < P > < E >

Check: non-singlet

- Non-singlet case: comparison with standard three-point approach
- Comparison with new results of [Cyprus/CSSM/QCDSF/UKQCD, 2014]

Figure: Comparison of the non-singlet Z factors calculated with the FH method ($Z_{A,FH}^{NS}$) and via the three-point function ($Z_{A,3-point}^{NS}$).

In order to transform to RGI use intermediate scheme (MOM)

- γ_A(non − singlet) = 0, γ_A(singlet) ≠ 0 → momentum dependence for singlet case
- After performing the transformation the remaining (*ap*)² dependence is parametrized as

$$Z_{\text{data}}^{\text{RGI}} = Z^{\text{RGI}} + c_1(ap)^2 + c_2\left((ap)^2\right)^2$$

- Fit range: 2 < (*ap*)² < 10
- Results: $Z_{A,NS}^{RGI} = 0.847(2)$ $Z_{A,NS}^{RGI,3-point} = 0.849(8)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{A,NS}^{RGI} = 0.861(9)$

イロン 不得 とくほ とくほ とうほう

- In order to transform to RGI use intermediate scheme (MOM)
- γ_A(non − singlet) = 0, γ_A(singlet) ≠ 0 → momentum dependence for singlet case
- After performing the transformation the remaining (*ap*)² dependence is parametrized as

$$Z_{\mathrm{data}}^{\mathrm{RGI}} = Z^{\mathrm{RGI}} + c_1(ap)^2 + c_2\left((ap)^2\right)^2$$

- Fit range: 2 < (*ap*)² < 10
- Results: $Z_{A,NS}^{RGI} = 0.847(2)$ $Z_{A,NS}^{RGI,3-point} = 0.849(8)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{A,NS}^{RGI} = 0.861(9)$

イロト イポト イヨト イヨト 二日

- In order to transform to RGI use intermediate scheme (MOM)
- γ_A(non − singlet) = 0, γ_A(singlet) ≠ 0 → momentum dependence for singlet case
- After performing the transformation the remaining (*ap*)² dependence is parametrized as

$$Z_{\text{data}}^{\text{RGI}} = Z^{\text{RGI}} + c_1(a\rho)^2 + c_2\left((a\rho)^2\right)^2$$

- Fit range: 2 < (*ap*)² < 10
- Results: $Z_{A,NS}^{RGI} = 0.847(2)$ $Z_{A,NS}^{RGI,3-point} = 0.849(8)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{A,NS}^{RGI} = 0.861(9)$

- In order to transform to RGI use intermediate scheme (MOM)
- γ_A(non − singlet) = 0, γ_A(singlet) ≠ 0 → momentum dependence for singlet case
- After performing the transformation the remaining (*ap*)² dependence is parametrized as

$$Z_{ ext{data}}^{ ext{RGI}} = Z^{ ext{RGI}} + c_1(ap)^2 + c_2\left((ap)^2
ight)^2$$

• Fit range: 2 < (*ap*)² < 10

• Results: $Z_{A,NS}^{RGI} = 0.847(2)$ $Z_{A,NS}^{RGI,3-point} = 0.849(8)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{A,S}^{RGI} = 0.861(9)$

- In order to transform to RGI use intermediate scheme (MOM)
- γ_A(non − singlet) = 0, γ_A(singlet) ≠ 0 → momentum dependence for singlet case
- After performing the transformation the remaining (*ap*)² dependence is parametrized as

$$Z_{ ext{data}}^{ ext{RGI}} = Z^{ ext{RGI}} + c_1(ap)^2 + c_2\left((ap)^2
ight)^2$$

- Fit range: 2 < (*ap*)² < 10
- Results: $Z_{A,NS}^{RGI} = 0.847(2)$ $Z_{A,NS}^{RGI,3-point} = 0.849(8)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{A,S}^{RGI} = 0.861(9)$

$$Z_{\rm A}^{\overline{
m MS}} = Z_{\rm A}^{
m RGI}/\Delta Z_{\rm A}^{\overline{
m MS}}$$

• Results:

$$Z_{A,NS}^{\overline{MS}} = Z_{A,NS}^{RGI} = 0.847(2)$$

Talk H. Perlt (Leipzig)

<ロ> <回> <回> <回> < 回</p>

$$Z_{\rm A}^{\overline{
m MS}} = Z_{\rm A}^{
m RGI}/\Delta Z_{\rm A}^{\overline{
m MS}}$$

• Results:

$$Z_{A,NS}^{\overline{MS}} = Z_{A,NS}^{RGI} = 0.847(2)$$

Talk H. Perlt (Leipzig)

<ロ> <回> <回> <回> < 回</p>

$$Z_{\rm A}^{\overline{
m MS}} = Z_{\rm A}^{
m RGI}/\Delta Z_{\rm A}^{\overline{
m MS}}$$

• Results:

$$Z_{A,NS}^{\overline{MS}} = Z_{A,NS}^{RGI} = 0.847(2)$$

Talk H. Perlt (Leipzig)

$$Z_{\rm A}^{\overline{\rm MS}} = Z_{\rm A}^{\rm RGI}/\Delta Z_{\rm A}^{\overline{\rm MS}}$$

• Results:

$$Z_{A,NS}^{\overline{MS}} = Z_{A,NS}^{RGI} = 0.847(2)$$

•
$$Z_{A,S}^{\overline{MS}} = 0.802(8)$$
 at $p^2 = 4 \, {
m GeV}^2$

<ロ> <回> <回> <回> < 回</p>

Ratio NS/S

Figure: The ratio $Z_{A,NS}^{\overline{MS}}/Z_{A,S}^{\overline{MS}}$

The ratio is close to 1 - supported by LPT: the difference between the non-singlet and singlet Z factors starts at two-loop only and is very small [*cf. talk of H. Panagopoulos*]

Talk H. Perlt (Leipzig)

FH approach to Z factors

Ratio NS/S

Figure: The ratio $Z_{A,NS}^{\overline{MS}}/Z_{A,S}^{\overline{MS}}$.

The ratio is close to 1 - supported by LPT: the difference between the non-singlet and singlet Z factors starts at two-loop only and is very small [*cf. talk of H. Panagopoulos*]

Talk H. Perlt (Leipzig)

FH approach to Z factors

• Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$

- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- Unitary quarks \rightarrow singlet case

•
$$\frac{\partial}{\partial\lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial\kappa})$$

• We use the *κ* values (0.12099, 0.12095, 0.12092)

・ 同 ト ・ ヨ ト ・ ヨ

- Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$
- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- Unitary quarks \rightarrow singlet case

•
$$\frac{\partial}{\partial \lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial \kappa})$$

• We use the *κ* values (0.12099, 0.12095, 0.12092)

- Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$
- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- Unitary quarks \rightarrow singlet case
- $\frac{\partial}{\partial \lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial \kappa})$
- We use the *κ* values (0.12099, 0.12095, 0.12092)

< (□) ト < 三 ト

- Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$
- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- Unitary quarks \rightarrow singlet case
- $\frac{\partial}{\partial \lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial \kappa})$
- We use the *κ* values (0.12099, 0.12095, 0.12092)

▲ 同 ▶ → (三)→

- Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$
- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- Unitary quarks \rightarrow singlet case

•
$$\frac{\partial}{\partial\lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial\kappa})$$

• We use the κ values (0.12099, 0.12095, 0.12092)

A (1) < A (1) </p>

- Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$
- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- Unitary quarks \rightarrow singlet case

•
$$\frac{\partial}{\partial\lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial\kappa})$$

• We use the *κ* values (0.12099, 0.12095, 0.12092)

- Scalar operator coupling $\lambda \, \bar{\psi} \, \mathbf{1} \, \psi \leftrightarrow m \, \bar{\psi} \, \psi$
- Mass term serves as coupling term of the scalar operator
- Partially quenched quarks \rightarrow non-singlet case
- $\bullet \ \ \text{Unitary quarks} \to \text{singlet case}$
- $\frac{\partial}{\partial\lambda} \rightarrow \frac{\partial}{\partial m} (\leftrightarrow \frac{\partial}{\partial\kappa})$
- We use the *κ* values (0.12099, 0.12095, 0.12092)

Figure: The non-singlet and singlet renormalization factors Z_S in the momentum range of interest.

Talk H. Perlt (Leipzig)

FH approach to Z factors

Lattice 2014 14 / 19

• Non-singlet case checked with three point function approach [Cyprus/CSSM/QCDSF/UKQCD, 2014]

< ロ > < 同 > < 三 > < 三

 Non-singlet case checked with three point function approach [Cyprus/CSSM/QCDSF/UKQCD, 2014]

Figure: Comparison of the non-singlet Z_S computed with the Feynman-Hellman method and from the three-point function.

Talk H. Perlt (Leipzig)

FH approach to Z factors

RGI and MS results

- RGI results: $Z_{S,NS}^{RGI} = 0.549(5)$ $Z_{S,NS}^{RGI,3-point} = 0.552(4)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{S,S}^{RGI} = 0.246(19)$
- $\overline{\text{MS}}$ results at $p^2 = 4 \,\text{GeV}^2$: $Z_{\text{S,NS}}^{\overline{\text{MS}}} = 0.740(7)$ $Z_{\text{S,NS}}^{\overline{\text{MS}},3-point} = 0.736(53) [Cyprus/CSSM/QCDSF/L]$ $Z_{\overline{\text{MS}}}^{\overline{\text{MS}}} = 0.222(26)$

(日) (日) (日) (日)

RGI and MS results

RGI results: $Z_{S NS}^{RGI} = 0.549(5)$ $Z_{S NS}^{RGI,3-point} = 0.552(4)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{SS}^{RGI} = 0.246(19)$ • $\overline{\text{MS}}$ results at $p^2 = 4 \,\text{GeV}^2$: $Z_{S NS}^{MS} = 0.740(7)$ $Z_{S,NS}^{\overline{MS},3-point} = 0.736(53)$ [Cyprus/CSSM/QCDSF/UKQCD, 2014] $Z_{SS}^{\rm MS} = 0.332(26)$

・ 同) ・ ヨ) ・ ヨ) …

Ratio NS/S

Figure: Non-singlet and singlet renormalization factors for the scalar operator in the $\overline{\rm MS}$ scheme.

The ratio is 2.23(18) for RGI and $\overline{\mathrm{MS}}$

Ratio NS/S

Figure: Non-singlet and singlet renormalization factors for the scalar operator in the $\overline{\rm MS}$ scheme.

The ratio is 2.23(18) for RGI and $\overline{\rm MS}$

• Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors

- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- $\bullet\,$ Straightforward inclusion of disconnected contributions $\rightarrow\,$ singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors
- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- $\bullet\,$ Straightforward inclusion of disconnected contributions $\rightarrow\,$ singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors
- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- $\bullet\,$ Straightforward inclusion of disconnected contributions $\rightarrow\,$ singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

- Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors
- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- Straightforward inclusion of disconnected contributions \rightarrow singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

- Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors
- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- Straightforward inclusion of disconnected contributions \rightarrow singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

- Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors
- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- Straightforward inclusion of disconnected contributions \rightarrow singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

- Presented Feynman-Hellman method for nonperturbative calculation of renormalization factors
- FH makes use of two-point functions \rightarrow better signals
- Additional action are needed
- Straightforward inclusion of disconnected contributions \rightarrow singlet operators
- First results for axial vector and scalar operators
- Even with very few configurations encouraging results
- Future steps: improved operators, improved statistics, additional operators

Acknowledgements

We thank ...

Australian Research Council NCI National Facility in Canberra, Australia Deutsche Forschungsgemeinschaft, DFG Grant: SCHI 422/9-1 JUQUEEN Project HLZ22

・ 同 ト ・ ヨ ト ・ ヨ

Acknowledgements

We thank ...

Australian Research Council NCI National Facility in Canberra, Australia Deutsche Forschungsgemeinschaft, DFG Grant: SCHI 422/9-1 JUQUEEN Project HLZ22

and for your attention!

< ロ > < 同 > < 回 > < 回 >