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Introduction
• Problem:  How is the spin distributed amongst its constituents?

- Polarized DIS experiments measure quark contribution ~30%

• Since the EMC “proton spin crisis”, measuring the spin content of 
the nucleon has been one of the most important efforts in hadron 
physics.

• Missing Spin? Gluonic contributions and orbital angular 
momentum of quarks and glue.

- COMPASS/STAR experiments have found gluon helicity distributions are close to zero.
- Recent quenched calculation performed (Deka et al, chiQCD collaboration)
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Glue Helicity - Experiment
• Measured in a number of methods in several experimental collaborations

- Photon Gluon Fusion (HERMES, COMPASS)

- Proton - Proton collisions (RHIC)

- Indirect determination from global fits
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Experimental Measurements
(HERMES, COMPASS)
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3. QCD  Q2 evolution of spin structure function g1(x,Q2):  
Indirect determination assuming a functional form G(x). 
Global fits include polarized DIS, SIDIS and pp data  
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• All measurements  compatible with 0 
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Gluon polarization

● Experimental efforts probing 

• All data consistent with small gluon helicity.  How to confront 
this theoretically?

.

Experimental Results for Nonzero Gluon Polarization

• Recent(2009 RHIC) experimental data show evidence of nonzero
polarization of gluon in the proton [Florian et. al,
arXiv:1404.4293], [STAR Collaboration: arXiv: 1405.5134 ]
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Gluon Polarization
�G =

Z
dx

i
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- Difficult to evaluate on the lattice

- Gauge Invariant, but what is the physical interpretation?
- Derived on the light-cone (infinite momentum frame)

• Performing the integral over the longitudinal components [Ji, Zhang, 

Zhao, PRL 111],

- How does it transform under gauge transformations?
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- Similar structure to ExA
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Gauge Invariance
• In a non-abelian theory, the perpendicular and parallel components of 

the gauge field transform separately under a gauge transformation [X.S. 

Chen et al., 2008].
~A = ~A? + ~Ak

- Decomposition is done in a fixed frame
- A-perp and A-parallel are not Lorentz covariant vectors

• Conventionally, motivated from EM theory, we define the perp 
components of A to transform gauge covariantly,

~

A? ! U(x) ~A?U
†(x)

• In the large momentum frame, we build gauge invariant operators from 
A-perp requiring,

@iAj,a
k � @jAi,a

k � gfabcAi,b
k Ac,j

k = 0

@iAi
? = ig

⇥
Ai, Ai

?
⇤
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• Formally solving for A-parallel using the conditions listed previously, 

Ai,a
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• And using the fact that,
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• The non-local, gauge-invariant operator can be re-written (in the 
infinite momentum frame)
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D
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?

E

z

• Where, under a gauge transformation,
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Comments
• The previous results rely on solving, order-by-order in the coupling, for 

the perp and parallel components of the gauge-field

- The Coulomb gauge satisfies both conditions (approximately)

@iAi
? = ig

⇥
Ai, Ai

?
⇤

@iAi
? = 0

- We choose,

- Up to this point, we have not fixed the gauge

@iAi = @i
⇣
Ai

k +Ai
?

⌘
= 0

~r · ~Aa
?,g!0 = ~r ·

✓
~Aa(0)� 1
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◆
= 0
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Our Approach
• Strategy: Choose Coulomb-Gauge fixing condition, 

~r · ~A = 0
(project out the transverse components of A)

• Approach the infinite momentum frame by computing 

for increasing values of proton momentum.

h ~E ⇥ ~A?i

• Search for a signal in Coulomb gauge before trying different gauge 
conditions.
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Gauge Tensor from Overlap
• We define the chromo-electric field from the overlap Dirac operator,

• Where as an expansion in lattice spacing ‘a’, it has been shown [Liu, 
Alexandru, Horvath, PLB, 659 (2008)]

The transcription of Aµ(x) to the hypercubic lattice with integer coordinates
n ≡ (n1, n2, n3, n4) is accomplished in a standard manner. If a is the classical lat-
tice spacing, we associate the lattice site n with the space–time point x = an, and
the lattice link variable Un,µ is defined as

Un,µ(a) ≡ exp
(

iaAµ(an)
)

(5)

The overlap Dirac operator Dov is given by [12]

Dov = ρ

(

1 + X
1√

X†X

)

; X = D/ − R − ρ + 4r (6)

where −ρ, ρ ∈ (0, 2r), is the negative mass parameter and

Dµ =
1

2
[UµSµ − S†

µU †
µ] R =

r

2

∑

µ

[UµSµ + S†
µU

†
µ] (7)

with
(Sµ)m,n ≡ δm,n−µ̂ (Uµ)m,n ≡ Um,µ δm,n (8)

We shall take the Euclidean γ–matrices to be Hermitian, i.e. γ†
µ = γµ and {γµ, γν} =

2δµ,ν .

With the above defining relations, we shall proceed to show the following in an
explicit calculation:

If Aµ(x) is a smooth SU(3) gauge potential on R4, and U(a) is the transcription of
this field to the hypercubic lattice with classical lattice spacing a, then

trs σµν Dov
0,0

(

U(a)
)

= cT a2 Fµν(0) + O(a3), (9)

where Dov
0,0 is the matrix element of the overlap operator at (m, n) = (0, 0). The

non-zero constant cT = cT (ρ) is independent of Aµ(x), and σµν ≡ 1
2i [γµ, γν].

3 Calculation

To proceed with the calculation, we shall assume that trs σµν Dov
0,0 has a Taylor ex-

pansion in a and we will compute the leading contributions.

To evaluate the diagonal element Dov
n,n we introduce the momentum variable in

the following way [15, 17]
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z3/2

cT (⇢ = 1.368, rw = 1.0) ⇡ 0.1157
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Chromo-electric Field
• With the previous result, we define the chromo-electric field

• For the Coulomb gauge-fixed gauge fields, 

Aµ(x) =

 
Uµ(x)� U

†
µ

2iag

!

traceless

Ei(x) = F

0i(x) = trs �0i Dov

(x, x)

- Valence overlap fermion on (2+1) flavor RBC/UKQCD
200 gauge configurations (24^3x63) lattice.

- Sea quark mass a*m(u,d) = 0.005, a*m(s) = 0.04, 
m(pion) = 331MeV

• The Fourier transform of this operator is not so trivial, and introduces 
an additional momentum integration. [M. Glatzmaier, 2014]

- 1/a = 1.77 GeV
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Very Preliminary Results
Fit Results
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Glue Helicity in Longitudinally Polarized Proton

p = 0 ! 0.03489162±0.0289 | 0.056713± 0.0209
p = 1 ! 0.11445934±0.0496 | 0.079707± 0.0357
p = 2 ! 0.19448887±0.1286 | 0.136807± 0.0594

- Please see S. Sufian’s talk for more details.
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Coulomb Gauge Perturbation Theory

• The matching calculation to the MS-bar scheme is underway at one-loop 
order.

- Coulomb Gauge QCD 
- Wilson fermion action
- Overlap derivative used to define ExA operator
- Including HYP smearing numerically

• For the lattice scheme, we follow the Kawai method and derive by hand the 
Coulomb gauge Feynman rules for both the ExA operator as well as the 
gluon propagator. 
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Methodology (Kawai, Nakayama, Seo)

• We perform a number of momentum subtractions to evaluate the one-
loop corrections to ExA on the lattice,

Independent of p, 
easier to compute

Dependent on p,
computed in continuum

• Where J is the Taylor-Expanded diagram

• The order is set such that the limit (I-J) can be taken safely.
- This Taylor expansion introduces an infrared singularity.
- Regulate this intermediate singularity in dim-reg.
- IR divergence has to cancel in the sum J + (I-J)

Generic Feynman
Diagram

J =
NX

n=0

p↵1 . . . p↵n

n!

(
@n

@p↵1
. . . @p↵n

I(a, p; k)
)

p!0

Î~µ(p) =

Z

k
J~µ(k) +

Z

k
(I~µ(k; p)� J~µ(k; p))a!0
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Coulomb Gauge
• The Coulomb Gauge fixing condition alters the standard expression for 

the gluon propagator,

Sg = �1

2

�
A⌫r⇤

µrµA⌫ �A⌫r⇤
µr⌫Aµ

�
+ Sgf

Sgf =
1

2↵

 
3X

i=1

r⇤
iAi

!

GC;ab
µ⌫ (k) = �ab

1

k̂2

 
�ij �

k̂ik̂j
k̄2

!
- The gluon propagator now contains non-covariant 

contributions

k̂2 =
X

µ

4

a2
sin2

akµ
2

, k̄2 =
3X

i=1

4

a2
sin2

aki
2

- These non-covariant 
terms alter some of the 
standard results in lattice 

perturbation theory.
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Non-covariant Lattice Integrals
• All one-loop integrations for lattice perturbation theory can be written 

schematically in terms of basis integrals

J(k) =

Z
ddk

(2⇡)d
k̂2nt

t

k̂2nx

x

k̂
2n

y

y

k̂2nz

z

D
F

(k,m
F

)nf D
B

(k,m
b

)nb

k̂2k̄2

- Algebraic reduction relations allow us to express this 
(nf=0) as a sum of basis integrals of the form,

B(k;~0) =

Z ⇡/a

�⇡/a

ddk

(2⇡)d
1

k̂2k̄2

- How to evaluate this integral with a non-covariant 
integrand?
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• We subtract from the integral a known integral with the same 
divergence, which can be computed analytically

B(k;~0) = I(k) +
⇣
B(k;~0)� I(k)

⌘

I(k;~0) =

Z ⇡/a

�⇡/a

dd�1k

(2⇡)d�1

1

(k̄2)3/2

- Where the integral I(k) is evaluated as a standard 
covariant integral in d-1 dimensions.

Finite difference to be 
computed numerically.

• This integral can be written as an expansion of a Modified Bessel function, 
and contains an IR singularity as D = 3-2*eps dimensions.

• We handle arbitrary powers of k-bar similarly, the subtracted integral is 
more complicated however. 
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• Case when nf > 0, for complicated Fermion actions is non-trivial.  We 
want to isolate the IR singular pieces in the general integral containing 
complicated Fermion propagator denominators,

J(k) =

Z
ddk

(2⇡)d
k̂2nt

t

k̂2nx

x

k̂
2n

y

y

k̂2nz

z

D
F

(k,m
F

)nf D
B

(k,m
b

)nb

• Split the integrand in a similar manner as before, writing,

1

DF
=

1

DB
+

✓
1

DF
� 1

DB

◆

Can be done 
analytically, as before.

Iterate until degree of 
divergence is reduced 

(numerical piece).

• In this way we can consider overlap fermion propagators.
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Mixing Calculation

• The one-loop renormalization of ExA includes off-diagonal mixing effects,

Difficulty in Calculating Proton Spin Content in Lattice QCD A Large Momentum Effective Field Theory (LaMET) Approach Summary

Matching to the physical results through a LaMET

One-loop example (Ji, Zhang, and Zhao, 2013)

k

p

k

p

k + p

• At large but finite ~p, taking the loop momentum k ! 1 first

hp, s|
⇣
~E ⇥ ~A?

⌘3
|p, si =

↵SCF

4⇡

"
5
3✏

+
5
3

ln
µ2

m2 +
4
3

ln
4~p2

m2 �
1
9

#
u†⌃3u+O(

m2

~p2 ) ,

(32)
• Taking ~p2 ! 1 first,

hp, s|
⇣
~E ⇥ ~A?

⌘3
|p, si = ↵SCF

4⇡
(
3
✏
+ 3 ln µ2

m2 + 7) u†⌃3u , (33)

• The light-cone gauge result,

hp, s|
⇣
~E ⇥ ~A

⌘3
|p, si A+=0

=
↵SCF

4⇡
(
3
✏
+ 3 ln µ2

m2 + 7) u†⌃3u . (34)

Lattice QCD Workshop Yong Zhao

• The continuum MS-bar (on-shell scheme) calculation has already been 
performed, [Ji, Zhang, Zhao, 2013]

Difficulty in Calculating Proton Spin Content in Lattice QCD A Large Momentum Effective Field Theory (LaMET) Approach Summary

Matching to the physical results through a LaMET

Calculating the matching coefficients at leading logarithm

Let’s take zqg and zgg as an example:

At tree level, �eGtree = �Gtree. At one loop level, for the gluonic matrix
elements of ~E ⇥ ~A? we calculate Feynman diagrams:

p

k

p

k k k k k

k k k k k k

Lattice QCD Workshop Yong Zhao

+ WFR

• The lattice calculation is underway.
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Conclusions
• Preliminary results are promising, technically we must extrapolate to the 

infinite momentum frame.  We are thinking of ways to make this analysis 
frame independent.

• We have started the lattice one-loop calculation for the case of Wilson 
fermion action with 0-HYP smearing.  Overlap and HYP smearing to be 
computed in the future.

• Other gauge-conditions are possible and will be considered later, such as 
the generalized Coulomb condition referenced earlier.

• Stay tuned for future results.

• Thanks for your attention!
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Backup
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Glue Helicity
• The gluon helicity is defined from,

  

Gluon polarization

● Gluon polarization

                 

●        fraction of proton helicity carried by gluons
● Axial anomaly screens quark spin content
● Appears as 
● Scales logarithmically with      as it becomes large

�G =

Z
dx�g(x)

•         is the fraction of proton helicity carried by the gluons.�G

• Large experimental effort underway to measure this quantity.
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Theoretical Efforts
• The textbook expression for the QCD angular momentum is,

~J = ~Jq + ~Jg

~Jq =

Z
 ̄
~⌃

2
 +

Z
 ̄ ~r ⇥ i ~D  

~Jg =

Z
~r ⇥

⇣
~E ⇥ ~B

⌘ (Gauge Invariant)

• It has become standard to evaluate parton physics on the light-cone 
using light-front quantization.  In this formalism, the helicity operator 
representing glue spin is a non-local and gauge-invariant. (Manohar).

Friday, June 27, 14



2014 Lattice Conference

Effective Mass 
mp=20300 mp=57600
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3pt Construction .

•Loop data L
i

(t1) ⌘ (~E ⇥ ~A
c

)
i

(t1) , t1 insertion time,
i-configuration index

•2-pt function C 2
i

(t2), t2 sink time

•Disconnected 3-pt function

C 3
i

(t2, t1) =

✓
C 2
i

(t2))(L
i

(t1))� < (C 2(t2) >< L(t1) >

◆

•Jackknife both C 2 and C 3 and use sum method [L. Maiani et al.,
Nucl. Phys. B293,420 (1987)]:

R
j

(t2, t1) =
hC̃ 3

j

(t2, t1)i
hC̃ 2

j

(t2)i

S
j

(t2) =
X

t1

R
j

(t2, t1)
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