A dynamical study of the chirally rotated Schrödinger functional in QCD

John Bulava, Mattia Dalla Brida*, Stefan Sint Trinity College Dublin, Ireland

32nd International Symposium on Lattice Field Theory, 24th of June 2014, New York, USA.

THE UNIVERSITY OF DUBLIN

Introduction

The Schrödinger functional and automatic O(a) improvement

Problem:

- Symanzik's effective theory + chiral symmetry of continuum QCD ⇒ automatic O(a) improvement for massless Wilson-fermions in finite volume with p.b.c.'s. (Frezzotti, Rossi '04; Shindler '05; Sint '05; Aoki, Bär '06)
- (standard) SF b.c.'s are incompatible with this argument!

 $\text{Consider: }\psi\to\gamma_5\,\psi,\ \overline\psi\to-\overline\psi\,\gamma_5\text{, using }P_\pm\equiv \tfrac12(1+\gamma_0)\text{,}$

$$\begin{array}{ll} P_+\psi(x)|_{x_0=0}=0, & \xrightarrow{\gamma_5} & P_-\psi(x)|_{x_0=0}=0, \\ \overline{\psi}(x)P_-|_{x_0=0}=0, & \overline{\psi}(x)P_+|_{x_0=0}=0. \end{array}$$

Solution:

- Find alternative SF b.c.'s and/or symmetry transformations of continuum QCD. (Frezzotti, Rossi '05; Sint '05)
- Generalize the ideas of tmQCD to the SF is a natural solution \Rightarrow chirally rotated SF (χ SF). (Sint '05)

The chirally rotated Schrödinger functional

A chiral rotation to the Schrödinger functional (Sint '05)

• Given the isospin doublets ψ and $\overline{\psi}$ satisfying standard SF b.c.'s, we consider the **chiral rotation**,

$$\psi \equiv R\chi \equiv e^{i\frac{\pi}{2}\gamma_5\frac{\tau^3}{2}}\chi, \quad \overline{\psi} \equiv \overline{\chi}R \equiv \overline{\chi}e^{i\frac{\pi}{2}\gamma_5\frac{\tau^3}{2}}.$$

• The fields χ and $\overline{\chi}$ satisfy the chirally rotated SF b.c.'s,

$$egin{aligned} \widetilde{Q}_+\chi(x)|_{x_0=0}&=0,\ \overline{\chi}(x)\widetilde{Q}_+|_{x_0=0}&=0, \end{aligned} \quad \widetilde{Q}_\pm\equivrac{1}{2}(1\pm i\gamma_0\gamma_5 au^3). \end{aligned}$$

• χ SF b.c.'s are **invariant** w.r.t. the continuum QCD symmetry, $\chi \rightarrow \gamma_5 \tau^1 \chi, \quad \overline{\chi} \rightarrow -\overline{\chi} \gamma_5 \tau^1.$

\Rightarrow automatic O(a) improvement can be rescued!

• Since R is a non-anomalous field transformation,

$$\langle O[\psi,\overline{\psi}]\rangle_{P_{\pm}} = \langle O[R\chi,\overline{\chi}R]\rangle_{\widetilde{Q}_{\pm}}.$$

On the lattice, we expect these relations to hold among renormalized correlation functions (up to cutoff effects) $||_{\mathbb{R}^{+}} \ge \mathbb{R}^{+} = \mathbb{R}^{+} \ge \mathbb{R}^{+} = \mathbb{R}^{+} =$

The chirally rotated Schrödinger functional Renormalization and O(a) improvement (Sint '11)

 For Wilson-fermions, the correct χSF b.c.'s are realized by fine-tuning a dim. 3 boundary counterterm (e.g. at x₀ = 0),

$$\overline{\chi}Q_{-}\chi \xrightarrow{R} -\overline{\psi}i\gamma_{5}\tau^{3}P_{-}\psi,$$

 \Rightarrow **breaks** parity and flavor symmetry: its coefficient, $z_f(g_0)$, can be fixed by imposing parity **restoration**.

• Automatic (bulk) O(a) improvement:

 \Rightarrow **NO** bulk O(a) effects for $\gamma_5 \tau^1$ -even obs. $(O \xrightarrow{\gamma_5 \tau^1} + O)$,

 \Rightarrow bulk O(a) effects are located in $\gamma_5 \tau^1$ -odd obs. $(O \xrightarrow{\gamma_5 \tau^1} - O)$.

- Full O(a) improvement needs the tuning of a couple of O(a) boundary counterterms. PT is generally good! (P. Vilaseca's talk)
- The setup has been studied in the quenched approximation
 - ✓ Automatic O(a) improvement, and universality relations.
 - ✓ Tuning of $m_0 \rightarrow m_{crit}$ and z_f quite independent once the action is improved. (Leder, Sint '10; Gonzalez Lopez, Jansen, Renner, Shindler '12)

Renormalization in the $\chi {\rm SF}$

Correlation functions we need ...

Boundary-to-bulk:

$$egin{aligned} g_X^{f_1f_2}(x_0) &= -rac{1}{2} \langle \overline{\chi}_{f_1}(x) \mathsf{\Gamma}_X \chi_{f_2}(x) \, \mathcal{O}_5^{f_2f_1}
angle, \ I_Y^{f_1f_2}(x_0) &= -rac{1}{6} \sum_k \langle \overline{\chi}_{f_1}(x) \mathsf{\Gamma}_{Y_k} \chi_{f_2}(x) \, \mathcal{O}_k^{f_2f_1}
angle, \end{aligned}$$

$$\begin{aligned} &\Gamma_X = A_0, V_0, S, P, \\ &\Gamma_{Y_k} = A_k, V_k, T_{k0}, \widetilde{T}_{0k}. \end{aligned}$$

Boundary-to-boundary:

$$egin{aligned} g_1^{f_1f_2} &= -rac{1}{2} \langle \mathcal{O}_5^{f_1f_2} \, \mathcal{O}_5'^{f_2f_1}
angle \ I_1^{f_1f_2} &= -rac{1}{6} \sum_k \langle \mathcal{O}_k^{f_1f_2} \, \mathcal{O}_k'^{f_2f_1}
angle \end{aligned}$$

 $\mathcal{O}_5^{f_1f_2}, \mathcal{O}_k^{f_1f_2} \equiv \text{bilinears of non-Dirichlet boundary quark-field components.}$

(Leder, Sint '10)

Renormalization in the χ **SF**

Renormalization conditions from universality relations, an example: Z_A

Universality relations:

We consider $\gamma_5 \tau^1$ -even correlation functions ($\widetilde{V} \equiv$ conserved current),

$$\begin{split} f_A^R &= g_A^{R\,uu'} = -ig_V^{R\,ud}, \qquad \Rightarrow \qquad Z_A \, g_A^{uu'} = -ig_{\widetilde{V}}^{ud} + \mathrm{O}(a^2), \\ k_V^R &= l_V^{R\,uu'} = -il_A^{R\,ud}, \qquad \Rightarrow \qquad Z_A \, l_A^{ud} = -il_{\widetilde{V}}^{uu'} + \mathrm{O}(a^2). \end{split}$$

Renormalization conditions:

We can turn the universality relations around and define ren. conditions,

$$Z_{A}^{g} \equiv \frac{-ig_{\widetilde{V}}^{ud}(x_{0})}{g_{A}^{uu'}(x_{0})}\Big|_{x_{0}=\frac{T}{2}}, \qquad Z_{A}^{I} \equiv \frac{iI_{\widetilde{V}}^{uu'}(x_{0})}{I_{A}^{ud}(x_{0})}\Big|_{x_{0}=\frac{T}{2}}$$

Z's so obtained are O(a) improved:

- NO need for operator improvement i.e. c_A or c_V.
- O(a) boundary effects cancel out in the ratios.

(Leder, Sint '10)

Lattice setup ... and a bit about the code

Setup:

- $N_{\rm f} = 2$ non-perturbatively O(a) improved Wilson-fermions.
- We consider a LCP defined by C = C' = 0, T = L, $L \approx 0.6$ fm $\Rightarrow a \approx [0.0755, 0.0658, 0.0486]$ fm, L/a = 8, 12, 16.

Tuning conditions:

$$\mathbf{m}_{\mathrm{crit}}: m_{\mathrm{PCAC}} = \left. \frac{\partial_0 g_A^{ud}(x_0)}{2 g_P^{ud}(x_0)} \right|_{x_0 = \frac{T}{2}} \stackrel{!}{=} 0; \qquad \mathbf{z}_{\mathbf{f}}: O^{\gamma_5 \tau^1 \text{-odd}} \stackrel{!}{=} 0.$$

Code:

- The code is based on the openQCD package. (Lüscher, Schaefer '12)
- Simulations of χ SF + SF O(*a*) improved Wilson-fermions.
- Several algorithmic features inherited: multilevel Hasenbusch twisted-mass- + EO-preconditioning, twisted-mass reweighing, ...

Lattice setup ... and a bit about the code

Setup:

- $N_{\rm f} = 2$ non-perturbatively O(a) improved Wilson-fermions.
- We consider a LCP defined by C = C' = 0, T = L, $L \approx 0.6$ fm $\Rightarrow a \approx [0.0755, 0.0658, 0.0486]$ fm, L/a = 8, 12, 16.

Tuning conditions:

$$\mathbf{m}_{\text{crit}}: m_{\text{PCAC}} = \frac{\partial_0 g_A^{ud}(x_0)}{2g_P^{ud}(x_0)} \bigg|_{x_0 = \frac{T}{2}} \stackrel{!}{=} 0; \quad \mathbf{z}_{\mathbf{f}}: g_A^{ud}(x_0)|_{x_0 = \frac{T}{2}} \stackrel{!}{=} 0.$$

Code:

- The code is based on the openQCD package. (Lüscher, Schaefer '12)
- Simulations of χ SF + SF O(a) improved Wilson-fermions.
- Several algorithmic features inherited: multilevel Hasenbusch twisted-mass- + EO-preconditioning, twisted-mass reweighing, ...

Determination of $m_{\rm crit}$ and z_f

 $m_{\rm PCAC}$ as a function of $m_q = m_0 - m_{\rm crit}$, for $a \approx 0.076$ fm, L/a = 8, and different z_f 's

Determination of m_{crit} and z_f $\gamma_5 \tau^1$ -odd functions g_A^{ud} and $g_P^{uu'}$ as a function of z_f , for $a \approx 0.076$ fm, L/a = 8

Renormalization constants

Comparison among different definitions of Z_V as a function of g_0^2

(Della Morte et. al. '05)

Renormalization constants

Comparison among different definitions of Z_A as a function of g_0^2

(Della Morte et. al. '05; Della Morte, Sommer, Takeda '08; Fritzsch et. al. '12)

Test of universality I

Continuum limit extrapolations for $Z_{V,A}$ differences

Test of automatic O(a) improvement

Continuum limit extrapolations of $\gamma_5 \tau^1$ -odd correlation functions

Flavor symmetry restoration

Continuum limit extrapolations of ratios of correlation functions for $\bar{g}_{\rm SF}^2(L) \approx 2.0$

Test of universality II

Continuum limit extrapolations for $\Delta Z_P = 1 - \frac{Z_P^{\text{XSF}}}{Z_{\text{XSF}}^{\text{XSF}}}$ for different LCP's

(Della Morte et. al. '05)

Outlook & Conclusions

Conclusions:

- Automatic O(a) improvement seems at work.
- Very flexible setup to devise renormalization conditions that allows good control over cutoff effects, and good precision.
- The additional tuning of z_f does not present any particular difficulty, and does not add too much work.

Outlook:

- This is a natural setup for renormalization problems in tmLQCD at maximal twist.
- Determination of renormalization constants for $N_{\rm f}=2+1$ can be obtained from a mixed setup: 2 χ SF + 1 SF fermions.
- Renormalization of more complicated operators, in particular 4-quark and twist-2 operators; very difficult w/o automatic O(a) improvement!

