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Large N transition in contractible Wilson loops.

The single eigenvalue distribution of smeared Wilson loops undergoes a
“compactification” transition on the unit circle at N =∞.
Below is an example at N = 29 of a 6× 6 smeared Wilson loop of size 0.6 Fermi
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Problem: approximately calculate σ in
units of ΛQC D by matching EST (effective
string theory) and PT ( YM perturbation
theory ) at large N at the transition point.
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EST

Previous work has led me to conclude that:

Long distance is described by EST, but EST is limited for loops with kinks.

EST is insensitive to N : it does not simplify as N →∞.

To test PT-EST matching we need MC for smooth loops.

On the lattice this leaves Polyakov as the single loop type option.

Problem: find a large N transition associated with Polyakov loops. This is not the
finite temperature transition – it should occur in the low temperature phase.

My talk addresses this problem, but does not solve it.
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Setup

UP(x) =P e
i
∮ x4

x4
A4(~x ,τ)dτ

PR(~x) =
1
dR
χR(UP(x))

GR(r) = 〈PR(0)PR(r)〉
WR(l, r) = log GR(r), where l is length of compact direction.

Example – a universal EST prediction:

Define: FR(l) = limr→∞ ∂
2WR(l, r)/∂ l∂ r

Let FR(l) = σn F̂R(l
p
σn), where n is the N -ality.

In this case EST has a lot to say: F̂(x) = 1+ c1/x2 + c2/x4 + c3/x6 + ..., with
c1,2,3 universal calculable numbers, independent of n.

Generalities

In general, some EST universal predictions exist for WR(∞, r), WR(l,∞). These
predictions do not depend on any microscopic details, get no benefit from making
N large, and are oblivious to the representation content of the loop.

In this respect EST is weaker than strong coupling. However, EST is Lorentz
invariant.
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Eigenvalue-eigenvalue correlations in 2D YM

For Polyakov loops need to consider at the least a two point function of
single-eigenvalue densities ρ(1)(θ ; U) = 2π

N

∑N
k=1 δ2π(θ − θk)

Use the same type of modelling as for Wilson loops: 2D YM.

Need the “cylinder propagator” ZN (UP1
, UP2
|t) =
∑

R χR(UP1
)e−

t
2N C2(R)χR(UP2

)

Calculate 〈ρ(1)1 (α)ρ
(1)
2 (β)〉c =
∫

dUp1
dUp2

ρ
(1)
1 (α)ρ

(1)
2 (β)[ZN (Up1

, Up2
|t)− 1]

This can be done using the character expansion
ρ(1)(θ ; U) = 1+ 1

2N
limε→0+
∑N−1

p=0

∑∞
q=0(−1)pe−ε(p+q+1)[ei(p+q+1)θχ(p,q)(U) +

e−i(p+q+1)θχ(p,q)(U)]

For simplicity, restrict to odd N .

Using C(p, q) = (p+ q+ 1)(N − p+q+1
N
+ q− p), I obtained

〈ρ(1)1 (α)ρ
(1)
2 (β)〉c =

1
N2

∑N−1
p=0

∑∞
q=0(−1)pe−

t
2N C(p,q) cos[(p+ q+ 1)(α− β)]

Taking the large N limit gives:

N 2〈ρ(1)1 (α)ρ
(1)
2 (β)〉 ∼ ℜ
Æ

N
t
ue−

t
2+

t
2N2
∫

d xp
2π

e−
N
2t x2+ 1

2t x2 1+uN e−N(x+ t
2 )+

t
2

1+ue−x− t
2 +

t
2N

1

1−ue−
t
2

,

where u= exp[i(α− β)].
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How well does the large N limit work?

Using a saddle point approximation, the result is given by the sum of a rapidly
oscillating piece and a non-oscillating piece:

1

2

sinh t
2

cosϕ+ e
t
2
�

sinh t
2

cos Nϕ− sinϕ sin Nϕ
�

sinh2 t
2
+ sin2ϕ

,

where ϕ = α− β . Observations:

This smooth expression differs from the universal form for random hermitian
matrix models, likely because of the absence of the potential term of the latter.

More important for us is that there is no large N transition separating
regimes of small t and large t .
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The approximate large N formula is compared with the exact finite N formula below with
the solid line showing the exact result. One sees that approximate large N expression
deteriorates when N decreases, when ϕ ≈ kπ, k ∈ Z and when t is small relative to 1.

N = 11, t = 0.3, 1,5

0.5 1.0 1.5 2.0 2.5 3.0
phi

- 6

- 4

- 2

2

4

6

Corr

0.5 1.0 1.5 2.0 2.5 3.0
phi

- 2

- 1

1

2

Corr

0.5 1.0 1.5 2.0 2.5 3.0
phi

- 1.0

- 0.5

0.5

1.0

Corr

N = 29, t = 0.3, 1,5
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General structure

.

For finite N , there is no reason for ρ(2) to depend only on the angle difference
since the Z(N) symmetry only provides invariance under simultaneous shifts of α
and β by 2πk/N .

Initial simulations were done collecting two dimensional histograms in the α,β
plane. Is was found that within practical numerical accuracy collapsing the
histograms along constant α− β lines did not loose any information.

This means that we may as well redefine ρ(2):

ρ(2)(α− β) =
N

2π

∫ π/N

−π/N
dθ 〈ρ(1)1 (α+ θ)ρ

(1)
2 (β + θ)〉c

producing a ρ(2) depending only on the angle difference on account of the Z(N)
symmetry.
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4D examples

In addition to raw data, I show a smoothed curve obtained by a cubic spline smoothing
method. The method of smoothing consists of a minimization of a weighted
combination of an average of the curve curvature and deviation from the data. The
smoothing procedure is quite ad-hoc, and only serves to produce curves to guide the
eye.
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Conclusions

There is no large N phase transition for large enough Polyakov loops as their
separation is varied.

To get a large N transition one would have to shrink the compact direction, while
maintaining the system in the now metastable confined phase. This may be
possible using quenching techniques and would be of theoretical interest also in
considerations of a possible fundamental QCD-string.

One also needs to extend EST to include the presence of all n ∈ Z(N)-type
strings and the associated group theoretical vertex.
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