Models of Walking Technicolor on the Lattice
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Introduction

We study models for the Higgs sector in which the Higgs is com-
posite.

In particular, we study Technicolor models — QCD-like theories
with massless fermions, where the Goldstone pion-like excita-
tions play the role of the Higgs field, giving mass to the W= and
Z.

Of particular interest are walking-Technicolor models, where there
IS a range of mass scales over which the running coupling evolves
very slowly. Such models can avoid the phenomenological prob-
lems with naive Technicolor.

QCD with 2 colour-sextet quarks is a candidate walking-Technicolor
model.

Need to distinguish whether this theory walks or is conformal.

Attractive because it has just the right number of Goldstone
bosons (3) to give mass to the W= and Z.



Other groups are studying this model: Lattice Higgs Collabora-
tion and DeGrand, Shamir & Svetitsky.

We study this theory at finite temperature to see if the coupling
at the chiral transition evolves as predicted by asymptotic free-
dom for a finite-temperature transition.

QCD with 3 colour-sextet quarks, which is believed to be con-
formal, is studied for comparison.

We simulate these theories, latticized with unimproved stag-
gered fermions, using the RHMC method.

Does QCD with 2 colour-sextet quarks have a light Higgs with
standard-model properties? What other light particles are in its
spectrum? Can any of its particles be dark-matter candidates?
What about its S (,7 and U) parameter(s)?

We have also considered SU (2) Yang-Mills with 3 Majorana/Weyl
fermions. However, it is unclear how to embed the weak gauge
group into this theory to give masses to the W's and Z.



QCD with 2 colour-sextet quarks at finite temperature

We simulate QCD with 2 color-sextet quarks at finite temperature
by simulating on an N2 x IV; lattice with N5 >> ;. Since T =
1/Nza, increasing Ny with T fixed decreases a. Assuming the
chiral phase transition is a finite-temperature transition, yields a
convenient T', Ty.. Measuring g or 3 = 6/g? at T}, gives a running
coupling at a sequence of as which approach zero as Ny — oo.

Ny = 12

Much of the past year has been devoted to increasing the statis-
tics for our simulations on 243 x 12 lattices at quark masses
m = 0.0025 and m = 0.005, close to the chiral transition.

For our largest mass m = 0.01 we have extended our simula-
tions at low 3s to determine the position of the deconfinement
transition.

Because the 3 dependence of the chiral condensate is so smooth
for the masses we use, we determine the position 3, of this



transition from the peaks in the (disconnected) chiral suscepti-
bility:

X =V [(($)?) — (Pep)?]
extrapolated to m = 0. V is the space-time volume.

For m = 0.01 in the range 5.7 < B < 5.9, near the deconfine-
ment transition, we run for 50,000 trajectories for each 3 with
3s spaced by 0.02. In the range 6.6 < 3 < 6.9, near the chiral
transition we run for 25,000 trajectories per 3 with 3s spaced by
0.02. Elsewhere in the range 5.7 < 3 < 7.2 we run for 10,000
trajectories for 3s spaced by 0.1.

For m = 0.005 in the range 6.6 < B8 < 6.9, we run for 50,000
trajectories per B at 3s spaced by 0.02. At 3 = 6.6 we run for
100,000 trajectories. Elsewhere in the range 6.4 < 3 < 7.2,
we run 10,000 trajectories per 3 for 3s spaced by 0.1.

For m = 0.0025 in the range 6.7 < 3 < 6.9, we will run
for 100,000 trajectories per 3 with 3s spaced by 0.02. In the
range 6.6 < B < 6.7, we will run for 50,000 trajectories per



3. These runs are nearing completion. Elsewhere in the range
6.5 < B8 < 7.2 we run 10,000 trajectories per 3 at 3s spaced
by 0.1.

Figure 1 shows the chiral condensates measured in these sim-
ulations. Note that while these suggest that this condensate will
vanish in the chiral limit for large enough 3 values, they do not
allow a precise determination of 3,.

Figure 2 shows the chiral susceptibilities from these runs. The
peak of the m = 0.0025 susceptibility yields an estimate of 3,,
namely 8y = 6.77(1).

Combining this with our IN;y = 8 results yields:
Bx (Nt = 12) — Bx(IN¢ = 8) = 0.08(2) ,
significantly smaller than the 2-loop perturbative prediction:
By (Nt = 12) — B4 (Ny = 8) = 0.12..
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Figure 1: Chiral condensates on a 243 x 12 lattice.
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Figure 2: Chiral susceptibilities on a 243 x 12 lattice.



Figure 3 shows the Wilson Lines from these simulations.

Figure 4 shows histograms of the magnitudes of Wilson Lines
for m = 0.01 near to the deconfinement transition. From this
we deduce that 84 = 5.81(1) for m = 0.01. This should be
close to the value for m = 0.

Ny ﬁd ﬁx

4 5.40(1)  6.3(1)
6  5.54(1) | 6.60(2)
8 | 5.65(1) | 6.69(1)
12 5.81(1)  6.77(1)

Table 1: Ny = 2 deconfinement and chiral transitions for Ny = 4,6, 8, 12.
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Figure 3: Wilson Lines (Polyakov Loops) on a 243 x 12 lattice: States with real
Wilson Lines only.
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Figure 4: Histograms of magnitudes of Wilson Lines for 3s close to the decon-
finement transition for m = 0.01.



QCD with 2 colour-sextet quarks at zero temperature

Planned simulations and measurements

Start with simulations on a 362 x 72 lattice at 3 = 6.1(?), at
several ms. [Deconfinement transition for 34(INy = 36) ~
6.25—6.4.]

Unfortunately, 3 = 6.1 is still too small to access the continuum
limit. However, we hope that we will be able to get results which
are qualitatively correct.

Repeat on 483 x 96 lattice.

Measure fr and spectrum of local mesons (connected).
Measure non-local pion spectrum. How large is taste breaking?
Measure glueball spectrum. Are glueballs light?

Measure meson spectrum including disconnected terms. |s there
a light n/n’?

s there a light 07 state with sufficient fermion content to be
the Higgs? Is its mass ~ % f?



Does this Higgs have the right couplings to W=, Z and ~?
Measure S parameter contributions.

Determine scaling behaviour of the chiral condensate to extract
Ym-

Determine mass dependence of meson (and glueball) masses,
and scaling behaviour.

Measure the QQ potential.
Examine the 3 dependence of the masses.



QCD with 3 colour-sextet quarks at finite temperature

We simulate lattice QCD with 3 colour-sextet quarks at finite
temperature for comparison with the 2-flavour case.

This theory is believed to be conformal with an infrared fixed
point.

The chiral transition should be a bulk transition fixed at a finite
constant 3, for IN; sufficiently large.

We have simulated this theory at N; = 4, 6 and 8, and are
now starting Ny = 12 simulations.

For N; = 6 we simulate on a 123 x 6 lattice at m = 0.02,
m = 0.01 and m = 0.005.

Close to the chiral transition, 6.2 < 8 < 6.4 at the lowest
quark mass (m = 0.005) we simulate at 3s separated by
0.02, with 100,000 trajectories per 3.

We estimate the position of the chiral transition as the peak
In the chiral susceptibility for m = 0.005.

For IN; = 8 we simulate on a 162 x 8 lattice at . = 0.01 and



m = 0.005.

Close to the chiral transition, 6.28 < 38 < 6.5 at the lowest
mass (m = 0.005) we simulate at 3s separated by 0.02. with
100,000 trajectories per 3.

We estimate the position of the chiral transition as the peak
In the chiral susceptibility for m = 0.005.

The results for the positions of the chiral and deconfinement
transitions for Ny = 4, 6 and 8 are given in table 2.

Ni B4 Bx
4 5.275(10)  6.0(1)

6 5.375(10) | 6.278(2)
8  5.45(10) | 6.37(1)

Table 2: N; = 3 deconfinement and chiral transitions for N; = 4,6, 8. In each
case we have attempted an extrapolation to the chiral limit.

Since
Bx (Nt = 8) — Bx (Nt = 6) = 0.09(1)
we have yet to see evidence of a bulk transition.



We are therefore starting N; = 12 simulations on a 243 x 12
lattice.

Figure 5 shows the m = 0.005 chiral susceptibilities for Ny =
6, Ny = 8 and preliminary results for Ny = 12.

Figure 6 shows the chiral condensates, both unsubtracted
and subtracted for our 163 x 8 simulations. The subtracted
condensates use the definition of the Lattice Higgs Collabo-
ration:

mva@?#)

8mv

<¢¢>sub — <IE¢> —

my—=—mm

Note, although it is clearer that the subtracted condensate will
vanish in the continuum limit for 3 sufficiently large than is the
case for the unsubtracted condensate, it still does not yield an
accurate estimate of 3.



N;,=3 m=0.00

80_' I I 3| I I I I | I I I I |

- X —— 12°%X6 & _

N 3 _

[ & —— 24 %12 i

- Ry i

20— % ® xm —

n juns _

2 T3 ¢ E
g 15 $§§ :
- T i

e Mi X B
5: %£§ E

E x & 4 _

O:| | | | | | | | | | | IT??%&:
5.5 6.0 6.5 7.0

§

Figure 5: Chiral susceptibilities for Ny = 3, m = 0.005 on 12 x 6, 16® x 8 and
243 x 12 lattices.
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Figure 6: Chiral condensates on a 163 x 8 lattice for m = 0.005 and m = 0.01.

The red graphs are unsubtracted, lattice regulated condensates.

The blue

graphs have been subtracted using the method of the Lattice Higgs Collabo-

ration.



QCD5 with 3 Majorana/Wey! colour-adjoint quarks

The symmetries of this theory are easiest to see in terms of
2-component (Weyl) fermions.

L=— F'WFu+ ¢lic! Duyp+ [pliosp — ¢plioyy”|
where 1) Is a 3-vector in coloury space and in flavour space.

If m = 0, the chiral flavour symmetry is SU (3).

The Majorana mass term reduces this flavour symmetry to the
real elements of SU (3), i.e. to SO(3).

Thus when m = 0 and the chiral symmetry breaks sponta-
neously, the chiral condensate is (Tioot) — YPTioap*). and
the spontaneous symmetry breaking pattern is

SU(3) — SO(3)

The unbroken generators of SU (3) are the 3 imaginary gener-
ators. These form a spin-1 representation under the unbroken
SO(3).



The 5 broken generators are the 5 real generators. They, as
well as the 5 corresponding Goldstone bosons, form a spin-2
representation of SO(3).

The problem occurs when one tries to embed the weak SU (2) X
U (1) group in such a way as to give masses to W= and Z.

This is easiest to see if we consider the case where the Wein-
berg angle is zero. Then we need to embed SU (2) in such a
way that all 3 components are broken spontaneously. Thus we
would need to make a set of SU (2) generators from the 5 real
SU (3) generators. However, the SU (2) algebra requires that
at least one of its generators is complex, so this is impossible.

The only Weinberg angle which would work is 7 /2 where the
photon is pure SU (2) and the Z is pure U (1).



Discussion and Conclusions

e We simulate lattice QCD with 2 colour-sextet quarks at finite
temperature to distinguish whether it is QCD-like and walks, or
If it is a conformal field theory.

e We run on lattices with Ny = 4,6,8,12. (3, increases by
0.08(2) between Ny = 8 and Ny = 12. While this increase
favours the walking scenario, this increase is significantly smaller
than the 2-loop prediction of = 0.12.

e Is this because 2-loop perturbation theory is inadequate for this
lattice action and 37 Are there sizable finite volume correc-
tions? Will the theory finally prove to be conformal?

e |f walking, this theory is a promising walking-technicolor theory.
We have outlined a program for checking its zero-temperature
properties. Does it have a light Higgs? Does it satisfy the preci-
sion electroweak constraints? Does it have a Dark Matter can-
didate? What about its particle spectrum?...........

e We simulate QCD with 3 colour-sextet quarks which should be



conformal. The increase in 3, between Ny = 6 and Ny = 8 Is
still appreciable (0.09(1)), so we don’t yet have evidence for 3,
approaching a finite constant as Ny — oc.

e We are now simulating at Ny = 12. This shows some promise.

e QCD» with 3 Majorana/Weyl quarks does not appear to be a
Technicolor candidate.

These simulations were performed on Hopper, Edison and Carver
at NERSC, Kraken at NICS, Stampede at TACC, and Fusion and
Blues at LCRC, Argonne.



