Models of Walking Technicolor on the Lattice

D. K. Sinclair and J. B. Kogut

- Introduction
- QCD with 2 colour-sextet quarks at finite temperature
- QCD with 2 colour-sextet quarks at zero temperature: Outline
- QCD with 3 colour-sextet quarks at finite temperature
- QCD₂ with 3 Majorana/Weyl colour-adjoint quarks: Fun but not physics?
- Discussion and conclusion

Introduction

We study models for the Higgs sector in which the Higgs is composite.

In particular, we study Technicolor models – QCD-like theories with massless fermions, where the Goldstone pion-like excitations play the role of the Higgs field, giving mass to the W^{\pm} and Z.

Of particular interest are walking-Technicolor models, where there is a range of mass scales over which the running coupling evolves very slowly. Such models can avoid the phenomenological problems with naive Technicolor.

QCD with 2 colour-sextet quarks is a candidate walking-Technicolor model.

Need to distinguish whether this theory walks or is conformal.

Attractive because it has just the right number of Goldstone bosons (3) to give mass to the W^{\pm} and Z.

Other groups are studying this model: Lattice Higgs Collaboration and DeGrand, Shamir & Svetitsky.

We study this theory at finite temperature to see if the coupling at the chiral transition evolves as predicted by asymptotic freedom for a finite-temperature transition.

QCD with 3 colour-sextet quarks, which is believed to be conformal, is studied for comparison.

We simulate these theories, latticized with unimproved staggered fermions, using the RHMC method.

Does QCD with 2 colour-sextet quarks have a light Higgs with standard-model properties? What other light particles are in its spectrum? Can any of its particles be dark-matter candidates? What about its S (,T and U) parameter(s)?

We have also considered SU(2) Yang-Mills with 3 Majorana/Weyl fermions. However, it is unclear how to embed the weak gauge group into this theory to give masses to the Ws and Z.

QCD with 2 colour-sextet quarks at finite temperature

We simulate QCD with 2 color-sextet quarks at finite temperature by simulating on an $N_s^3 \times N_t$ lattice with $N_s >> N_t$. Since $T = 1/N_t a$, increasing N_t with T fixed decreases a. Assuming the chiral phase transition is a finite-temperature transition, yields a convenient T, T_{χ} . Measuring g or $\beta = 6/g^2$ at T_{χ} gives a running coupling at a sequence of as which approach zero as $N_t \to \infty$.

$N_t = 12$

Much of the past year has been devoted to increasing the statistics for our simulations on $24^3 \times 12$ lattices at quark masses m = 0.0025 and m = 0.005, close to the chiral transition.

For our largest mass m = 0.01 we have extended our simulations at low β s to determine the position of the deconfinement transition.

Because the β dependence of the chiral condensate is so smooth for the masses we use, we determine the position β_{χ} of this transition from the peaks in the (disconnected) chiral susceptibility:

$$\chi_{ar{\psi}\psi} = V \left[\langle (ar{\psi}\psi)^2
angle - \langle ar{\psi}\psi
angle^2
ight] \, ,$$

extrapolated to m = 0. V is the space-time volume.

For m = 0.01 in the range $5.7 \le \beta \le 5.9$, near the deconfinement transition, we run for 50,000 trajectories for each β with β s spaced by 0.02. In the range $6.6 \le \beta \le 6.9$, near the chiral transition we run for 25,000 trajectories per β with β s spaced by 0.02. Elsewhere in the range $5.7 \le \beta \le 7.2$ we run for 10,000 trajectories for β s spaced by 0.1.

For m = 0.005 in the range $6.6 < \beta \le 6.9$, we run for 50,000 trajectories per β at β s spaced by 0.02. At $\beta = 6.6$ we run for 100,000 trajectories. Elsewhere in the range $6.4 \le \beta \le 7.2$, we run 10,000 trajectories per β for β s spaced by 0.1.

For m = 0.0025 in the range $6.7 \le \beta \le 6.9$, we will run for 100,000 trajectories per β with β s spaced by 0.02. In the range $6.6 \le \beta < 6.7$, we will run for 50,000 trajectories per

 β . These runs are nearing completion. Elsewhere in the range $6.5 \leq \beta \leq 7.2$ we run 10,000 trajectories per β at β s spaced by 0.1.

Figure 1 shows the chiral condensates measured in these simulations. Note that while these suggest that this condensate will vanish in the chiral limit for large enough β values, they do not allow a precise determination of β_{χ} .

Figure 2 shows the chiral susceptibilities from these runs. The peak of the m = 0.0025 susceptibility yields an estimate of β_{χ} , namely $\beta_{\chi} = 6.77(1)$.

Combining this with our $N_t = 8$ results yields:

$$eta_{\chi}(N_t=12) - eta_{\chi}(N_t=8) = 0.08(2) \; ,$$

significantly smaller than the 2-loop perturbative prediction:

$$eta_\chi(N_t=12)-eta_\chi(N_t=8)pprox 0.12$$
 .

Figure 1: Chiral condensates on a $24^3 \times 12$ lattice.

Figure 2: Chiral susceptibilities on a $24^3 \times 12$ lattice.

Figure 3 shows the Wilson Lines from these simulations.

Figure 4 shows histograms of the magnitudes of Wilson Lines for m = 0.01 near to the deconfinement transition. From this we deduce that $\beta_d = 5.81(1)$ for m = 0.01. This should be close to the value for m = 0.

Table 1: $N_f = 2$ deconfinement and chiral transitions for $N_t = 4, 6, 8, 12$.

Figure 3: Wilson Lines (Polyakov Loops) on a $24^3 \times 12$ lattice: States with real Wilson Lines only.

Figure 4: Histograms of magnitudes of Wilson Lines for β s close to the deconfinement transition for m = 0.01.

QCD with 2 colour-sextet quarks at zero temperature

Planned simulations and measurements

Start with simulations on a $36^3 \times 72$ lattice at $\beta = 6.1(?)$, at several *m*s. [Deconfinement transition for $\beta_d(N_t = 36) \sim 6.25-6.4$.]

Unfortunately, $\beta = 6.1$ is still too small to access the continuum limit. However, we hope that we will be able to get results which are qualitatively correct.

Repeat on $48^3 \times 96$ lattice.

Measure f_{π} and spectrum of local mesons (connected).

Measure non-local pion spectrum. How large is taste breaking?

Measure glueball spectrum. Are glueballs light?

Measure meson spectrum including disconnected terms. Is there a light $\eta/\eta'?$

Is there a light 0^{++} state with sufficient fermion content to be the Higgs? Is its mass $\approx \frac{1}{2}f_{\pi}$?

Does this Higgs have the right couplings to W^{\pm}, Z and $\gamma?$

Measure *S* parameter contributions.

Determine scaling behaviour of the chiral condensate to extract γ_m .

Determine mass dependence of meson (and glueball) masses, and scaling behaviour.

Measure the $Q\overline{Q}$ potential.

Examine the β dependence of the masses.

QCD with 3 colour-sextet quarks at finite temperature

We simulate lattice QCD with 3 colour-sextet quarks at finite temperature for comparison with the 2-flavour case.

This theory is believed to be conformal with an infrared fixed point.

The chiral transition should be a bulk transition fixed at a finite constant β_{χ} for N_t sufficiently large.

We have simulated this theory at $N_t = 4$, 6 and 8, and are now starting $N_t = 12$ simulations.

For $N_t = 6$ we simulate on a $12^3 \times 6$ lattice at m = 0.02, m = 0.01 and m = 0.005.

Close to the chiral transition, $6.2 \leq \beta \leq 6.4$ at the lowest quark mass (m = 0.005) we simulate at β s separated by 0.02, with 100,000 trajectories per β .

We estimate the position of the chiral transition as the peak in the chiral susceptibility for m = 0.005.

For $N_t = 8$ we simulate on a $16^3 \times 8$ lattice at m = 0.01 and

m = 0.005.

Close to the chiral transition, $6.28 \le \beta \le 6.5$ at the lowest mass (m = 0.005) we simulate at β s separated by 0.02. with 100,000 trajectories per β .

We estimate the position of the chiral transition as the peak in the chiral susceptibility for m = 0.005.

The results for the positions of the chiral and deconfinement transitions for $N_t = 4$, 6 and 8 are given in table 2.

N_t	eta_{d}	eta_χ
4	5.275(10)	6.0(1)
6	5.375(10)	6.278(2)
8	5.45(10)	6.37(1)

Table 2: $N_f = 3$ deconfinement and chiral transitions for $N_t = 4, 6, 8$. In each case we have attempted an extrapolation to the chiral limit.

Since

$$\beta_{\chi}(N_t = 8) - \beta_{\chi}(N_t = 6) = 0.09(1)$$

we have yet to see evidence of a bulk transition.

We are therefore starting $N_t = 12$ simulations on a $24^3 \times 12$ lattice.

Figure 5 shows the m = 0.005 chiral susceptibilities for $N_t = 6$, $N_t = 8$ and preliminary results for $N_t = 12$.

Figure 6 shows the chiral condensates, both unsubtracted and subtracted for our $16^3 \times 8$ simulations. The subtracted condensates use the definition of the Lattice Higgs Collaboration:

$$\langle \bar{\psi}\psi
angle_{sub} = \langle \bar{\psi}\psi
angle - \left(m_V rac{\partial}{\partial m_V} \langle \bar{\psi}\psi
angle
ight)_{m_V = m}$$

Note, although it is clearer that the subtracted condensate will vanish in the continuum limit for β sufficiently large than is the case for the unsubtracted condensate, it still does not yield an accurate estimate of β_{χ} .

Figure 5: Chiral susceptibilities for $N_f = 3$, m = 0.005 on $12^3 \times 6$, $16^3 \times 8$ and $24^3 \times 12$ lattices.

Figure 6: Chiral condensates on a $16^3 \times 8$ lattice for m = 0.005 and m = 0.01. The red graphs are unsubtracted, lattice regulated condensates. The blue graphs have been subtracted using the method of the Lattice Higgs Collaboration.

QCD₂ with 3 Majorana/Weyl colour-adjoint quarks

The symmetries of this theory are easiest to see in terms of 2-component (Weyl) fermions.

$${\cal L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}\psi^{\dagger}i\sigma^{\mu}\,\overleftrightarrow{D}_{\mu}\,\psi+rac{m}{2}ig[\psi^{T}i\sigma_{2}\psi-\psi^{\dagger}i\sigma_{2}\psi^{*}ig]$$

where ψ is a 3-vector in colour₂ space and in flavour space.

If m = 0, the chiral flavour symmetry is SU(3).

The Majorana mass term reduces this flavour symmetry to the real elements of SU(3), i.e. to SO(3).

Thus when m = 0 and the chiral symmetry breaks spontaneously, the chiral condensate is $\langle \psi^T i \sigma_2 \psi - \psi^{\dagger} i \sigma_2 \psi^* \rangle$. and the spontaneous symmetry breaking pattern is

SU(3)
ightarrow SO(3)

The unbroken generators of SU(3) are the 3 imaginary generators. These form a spin-1 representation under the unbroken SO(3).

The 5 broken generators are the 5 real generators. They, as well as the 5 corresponding Goldstone bosons, form a spin-2 representation of SO(3).

The problem occurs when one tries to embed the weak SU(2) imes U(1) group in such a way as to give masses to W^{\pm} and Z.

This is easiest to see if we consider the case where the Weinberg angle is zero. Then we need to embed SU(2) in such a way that all 3 components are broken spontaneously. Thus we would need to make a set of SU(2) generators from the 5 real SU(3) generators. However, the SU(2) algebra requires that at least one of its generators is complex, so this is impossible.

The only Weinberg angle which would work is $\pi/2$ where the photon is pure SU(2) and the Z is pure U(1).

Discussion and Conclusions

- We simulate lattice QCD with 2 colour-sextet quarks at finite temperature to distinguish whether it is QCD-like and walks, or if it is a conformal field theory.
- We run on lattices with $N_t = 4, 6, 8, 12$. β_{χ} increases by 0.08(2) between $N_t = 8$ and $N_t = 12$. While this increase favours the walking scenario, this increase is significantly smaller than the 2-loop prediction of ≈ 0.12 .
- Is this because 2-loop perturbation theory is inadequate for this lattice action and β ? Are there sizable finite volume corrections? Will the theory finally prove to be conformal?
- If walking, this theory is a promising walking-technicolor theory. We have outlined a program for checking its zero-temperature properties. Does it have a light Higgs? Does it satisfy the precision electroweak constraints? Does it have a Dark Matter candidate? What about its particle spectrum?.....
- We simulate QCD with 3 colour-sextet quarks which should be

conformal. The increase in β_{χ} between $N_t = 6$ and $N_t = 8$ is still appreciable (0.09(1)), so we don't yet have evidence for β_{χ} approaching a finite constant as $N_t \to \infty$.

- We are now simulating at $N_t = 12$. This shows some promise.
- QCD₂ with 3 Majorana/Weyl quarks does not appear to be a Technicolor candidate.

These simulations were performed on Hopper, Edison and Carver at NERSC, Kraken at NICS, Stampede at TACC, and Fusion and Blues at LCRC, Argonne.