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Introduction

We study models for the Higgs sector in which the Higgs is com-
posite.

In particular, we study Technicolor models – QCD-like theories
with massless fermions, where the Goldstone pion-like excita-
tions play the role of the Higgs field, giving mass to theW± and
Z.

Of particular interest are walking-Technicolor models, where there
is a range of mass scales over which the running coupling evolves
very slowly. Such models can avoid the phenomenological prob-
lems with naive Technicolor.

QCD with 2 colour-sextet quarks is a candidate walking-Technicolor
model.

Need to distinguish whether this theory walks or is conformal.

Attractive because it has just the right number of Goldstone
bosons (3) to give mass to the W± and Z.
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Other groups are studying this model: Lattice Higgs Collabora-
tion and DeGrand, Shamir & Svetitsky.

We study this theory at finite temperature to see if the coupling
at the chiral transition evolves as predicted by asymptotic free-
dom for a finite-temperature transition.

QCD with 3 colour-sextet quarks, which is believed to be con-
formal, is studied for comparison.

We simulate these theories, latticized with unimproved stag-
gered fermions, using the RHMC method.

Does QCD with 2 colour-sextet quarks have a light Higgs with
standard-model properties? What other light particles are in its
spectrum? Can any of its particles be dark-matter candidates?
What about its S (,T and U ) parameter(s)?

We have also considered SU(2) Yang-Mills with 3 Majorana/Weyl
fermions. However, it is unclear how to embed the weak gauge
group into this theory to give masses to the W s and Z.
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QCD with 2 colour-sextet quarks at finite temperature

We simulate QCD with 2 color-sextet quarks at finite temperature
by simulating on an N3

s ×Nt lattice with Ns >> Nt. Since T =
1/Nta, increasing Nt with T fixed decreases a. Assuming the
chiral phase transition is a finite-temperature transition, yields a
convenient T , Tχ. Measuring g or β = 6/g2 at Tχ gives a running
coupling at a sequence of as which approach zero as Nt → ∞.

Nt = 12

Much of the past year has been devoted to increasing the statis-
tics for our simulations on 243 × 12 lattices at quark masses
m = 0.0025 and m = 0.005, close to the chiral transition.

For our largest mass m = 0.01 we have extended our simula-
tions at low βs to determine the position of the deconfinement
transition.

Because the β dependence of the chiral condensate is so smooth
for the masses we use, we determine the position βχ of this
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transition from the peaks in the (disconnected) chiral suscepti-
bility:

χψ̄ψ = V

〈(ψ̄ψ)2〉 − 〈ψ̄ψ〉2




extrapolated to m = 0. V is the space-time volume.

For m = 0.01 in the range 5.7 ≤ β ≤ 5.9, near the deconfine-
ment transition, we run for 50,000 trajectories for each β with
βs spaced by 0.02. In the range 6.6 ≤ β ≤ 6.9, near the chiral
transition we run for 25,000 trajectories per β with βs spaced by
0.02. Elsewhere in the range 5.7 ≤ β ≤ 7.2 we run for 10,000
trajectories for βs spaced by 0.1.

For m = 0.005 in the range 6.6 < β ≤ 6.9, we run for 50,000
trajectories per β at βs spaced by 0.02. At β = 6.6 we run for
100,000 trajectories. Elsewhere in the range 6.4 ≤ β ≤ 7.2,
we run 10,000 trajectories per β for βs spaced by 0.1.

For m = 0.0025 in the range 6.7 ≤ β ≤ 6.9, we will run
for 100,000 trajectories per β with βs spaced by 0.02. In the
range 6.6 ≤ β < 6.7, we will run for 50,000 trajectories per
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β. These runs are nearing completion. Elsewhere in the range
6.5 ≤ β ≤ 7.2 we run 10,000 trajectories per β at βs spaced
by 0.1.

Figure 1 shows the chiral condensates measured in these sim-
ulations. Note that while these suggest that this condensate will
vanish in the chiral limit for large enough β values, they do not
allow a precise determination of βχ.

Figure 2 shows the chiral susceptibilities from these runs. The
peak of the m = 0.0025 susceptibility yields an estimate of βχ,
namely βχ = 6.77(1).

Combining this with our Nt = 8 results yields:

βχ(Nt = 12) − βχ(Nt = 8) = 0.08(2) ,

significantly smaller than the 2-loop perturbative prediction:

βχ(Nt = 12) − βχ(Nt = 8) ≈ 0.12 .
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Figure 1: Chiral condensates on a 243 × 12 lattice.
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Figure 2: Chiral susceptibilities on a 243 × 12 lattice.
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Figure 3 shows the Wilson Lines from these simulations.

Figure 4 shows histograms of the magnitudes of Wilson Lines
for m = 0.01 near to the deconfinement transition. From this
we deduce that βd = 5.81(1) for m = 0.01. This should be
close to the value for m = 0.

Nt βd βχ
4 5.40(1) 6.3(1)
6 5.54(1) 6.60(2)
8 5.65(1) 6.69(1)
12 5.81(1) 6.77(1)

Table 1: Nf = 2 deconfinement and chiral transitions for Nt = 4,6,8,12.
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Figure 3: Wilson Lines (Polyakov Loops) on a 243 × 12 lattice: States with real
Wilson Lines only.
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Figure 4: Histograms of magnitudes of Wilson Lines for βs close to the decon-
finement transition for m = 0.01.

11



QCD with 2 colour-sextet quarks at zero temperature

Planned simulations and measurements
Start with simulations on a 363 × 72 lattice at β = 6.1(?), at
several ms. [Deconfinement transition for βd(Nt = 36) ∼
6.25−6.4.]
Unfortunately, β = 6.1 is still too small to access the continuum
limit. However, we hope that we will be able to get results which
are qualitatively correct.
Repeat on 483 × 96 lattice.
Measure fπ and spectrum of local mesons (connected).
Measure non-local pion spectrum. How large is taste breaking?
Measure glueball spectrum. Are glueballs light?
Measure meson spectrum including disconnected terms. Is there
a light η/η′?
Is there a light 0++ state with sufficient fermion content to be
the Higgs? Is its mass ≈ 1

2fπ?
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Does this Higgs have the right couplings to W±, Z and γ?

Measure S parameter contributions.

Determine scaling behaviour of the chiral condensate to extract
γm.

Determine mass dependence of meson (and glueball) masses,
and scaling behaviour.

Measure the QQ potential.

Examine the β dependence of the masses.
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QCD with 3 colour-sextet quarks at finite temperature

We simulate lattice QCD with 3 colour-sextet quarks at finite
temperature for comparison with the 2-flavour case.
This theory is believed to be conformal with an infrared fixed
point.
The chiral transition should be a bulk transition fixed at a finite
constant βχ for Nt sufficiently large.
We have simulated this theory at Nt = 4, 6 and 8, and are
now starting Nt = 12 simulations.
For Nt = 6 we simulate on a 123 × 6 lattice at m = 0.02,
m = 0.01 and m = 0.005.
Close to the chiral transition, 6.2 ≤ β ≤ 6.4 at the lowest
quark mass (m = 0.005) we simulate at βs separated by
0.02, with 100,000 trajectories per β.
We estimate the position of the chiral transition as the peak
in the chiral susceptibility for m = 0.005.
ForNt = 8 we simulate on a 163×8 lattice atm = 0.01 and
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m = 0.005.
Close to the chiral transition, 6.28 ≤ β ≤ 6.5 at the lowest
mass (m = 0.005) we simulate at βs separated by 0.02. with
100,000 trajectories per β.
We estimate the position of the chiral transition as the peak
in the chiral susceptibility for m = 0.005.
The results for the positions of the chiral and deconfinement
transitions for Nt = 4, 6 and 8 are given in table 2.

Nt βd βχ
4 5.275(10) 6.0(1)
6 5.375(10) 6.278(2)
8 5.45(10) 6.37(1)

Table 2: Nf = 3 deconfinement and chiral transitions for Nt = 4,6,8. In each
case we have attempted an extrapolation to the chiral limit.

Since
βχ(Nt = 8) − βχ(Nt = 6) = 0.09(1)

we have yet to see evidence of a bulk transition.
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We are therefore starting Nt = 12 simulations on a 243 × 12
lattice.
Figure 5 shows them = 0.005 chiral susceptibilities forNt =
6, Nt = 8 and preliminary results for Nt = 12.
Figure 6 shows the chiral condensates, both unsubtracted
and subtracted for our 163 × 8 simulations. The subtracted
condensates use the definition of the Lattice Higgs Collabo-
ration:

〈ψ̄ψ〉sub = 〈ψ̄ψ〉 −

mV

∂

∂mV
〈ψ̄ψ〉



mV=m

.

Note, although it is clearer that the subtracted condensate will
vanish in the continuum limit for β sufficiently large than is the
case for the unsubtracted condensate, it still does not yield an
accurate estimate of βχ.
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Figure 5: Chiral susceptibilities forNf = 3,m = 0.005 on 123 ×6, 163 ×8 and
243 × 12 lattices.
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Figure 6: Chiral condensates on a 163×8 lattice form = 0.005 andm = 0.01.
The red graphs are unsubtracted, lattice regulated condensates. The blue
graphs have been subtracted using the method of the Lattice Higgs Collabo-
ration.
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QCD2 with 3 Majorana/Weyl colour-adjoint quarks
The symmetries of this theory are easiest to see in terms of
2-component (Weyl) fermions.

L = −1

4
FµνFµν +

1

2
ψ†iσµ ↔

Dµ ψ+
m

2


ψT iσ2ψ−ψ†iσ2ψ

∗


where ψ is a 3-vector in colour2 space and in flavour space.
If m = 0, the chiral flavour symmetry is SU(3).
The Majorana mass term reduces this flavour symmetry to the
real elements of SU(3), i.e. to SO(3).
Thus when m = 0 and the chiral symmetry breaks sponta-
neously, the chiral condensate is 〈ψT iσ2ψ − ψ†iσ2ψ

∗〉. and
the spontaneous symmetry breaking pattern is

SU(3) → SO(3)

The unbroken generators of SU(3) are the 3 imaginary gener-
ators. These form a spin-1 representation under the unbroken
SO(3).
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The 5 broken generators are the 5 real generators. They, as
well as the 5 corresponding Goldstone bosons, form a spin-2
representation of SO(3).

The problem occurs when one tries to embed the weak SU(2)×
U(1) group in such a way as to give masses to W± and Z.

This is easiest to see if we consider the case where the Wein-
berg angle is zero. Then we need to embed SU(2) in such a
way that all 3 components are broken spontaneously. Thus we
would need to make a set of SU(2) generators from the 5 real
SU(3) generators. However, the SU(2) algebra requires that
at least one of its generators is complex, so this is impossible.

The only Weinberg angle which would work is π/2 where the
photon is pure SU(2) and the Z is pure U(1).
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Discussion and Conclusions

•We simulate lattice QCD with 2 colour-sextet quarks at finite
temperature to distinguish whether it is QCD-like and walks, or
if it is a conformal field theory.

•We run on lattices with Nt = 4,6,8,12. βχ increases by
0.08(2) between Nt = 8 and Nt = 12. While this increase
favours the walking scenario, this increase is significantly smaller
than the 2-loop prediction of ≈ 0.12.

• Is this because 2-loop perturbation theory is inadequate for this
lattice action and β? Are there sizable finite volume correc-
tions? Will the theory finally prove to be conformal?

• If walking, this theory is a promising walking-technicolor theory.
We have outlined a program for checking its zero-temperature
properties. Does it have a light Higgs? Does it satisfy the preci-
sion electroweak constraints? Does it have a Dark Matter can-
didate? What about its particle spectrum?...........

•We simulate QCD with 3 colour-sextet quarks which should be
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conformal. The increase in βχ between Nt = 6 and Nt = 8 is
still appreciable (0.09(1)), so we don’t yet have evidence for βχ
approaching a finite constant as Nt → ∞.

•We are now simulating at Nt = 12. This shows some promise.

• QCD2 with 3 Majorana/Weyl quarks does not appear to be a
Technicolor candidate.

These simulations were performed on Hopper, Edison and Carver
at NERSC, Kraken at NICS, Stampede at TACC, and Fusion and
Blues at LCRC, Argonne.
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