

M. Diefenthaler on behalf of the **EICUG Software Working Group**

EICUG Software Working Group

Convener

67 members

A. Bressan (Trieste)M. Diefenthaler (JLAB)T. Wenaus (BNL)

Mailing list <u>eicug-software@eicug.org</u> subscribe via Google Group Repository <u>http://gitlab.com/eic</u> Website <u>http://www.eicug.org/web/content/eic-software</u>

Working Group Goals Support Yellow Report Initiative

Role of Software Working Group in Yellow Report initiative

Develop

Support

Workflow environment for EIC simulations

• to use (tools, documentation, support) and

• to grow with user input (direction, documentation, tools)

Involvement from EICUG

- **Coordinate simulations** Please continue to reach out to us.
- Analysis preservation Please make your software available and integrate it.
- **Design detectors** We rely on your expertise.
- **Developing reconstruction algorithms** We rely on your expertise.
- **Develop physics analysis** We rely on your expertise.

Online tutorials

EICUG	EIC User (3 subscribers	Group <u>https:</u>	//www.youtube.com/	<u>channel/UCXc9\</u>	<u> </u>	<u> 3rotkf7w</u>	SUBSCRIBE
HOME	VIDEOS	PLAYLISTS	CHANNELS DISCUSS	ION ABOUT	Q		
Uploads 🕨	PLAY ALL						
EXCEPT A Shi fee Tel Management of the Annual Shi fee Tel Management of the Annual Shi fee Management of the Annual Shi fee Manageme	27:50	Creating a velocitie with an end of the second sec	Make we want the second	Structure of our from		And	
EIC Software Gro Introduction (01)	oup: An /09/2020)	EIC Software Tutorial: Example Detector	EICUG Software Workin Group: Greenfield	g EIC Software Tuto Detector Full Sim	orial: EIC Softw ulations in Detector	ware Tutorial: Full Simulations in	EIC Software Tutorial: Fast Simulations (01/09/2020)
5 views • 1 week	ago	3 views • 1 week ago	31 views • 1 month ago	35 views • 1 month	n ago 32 views	 1 month ago 	30 views • 1 month ago

Recordings from tutorials

- Fast Simulation Tutorial Introduction to JupyterLab workspace, using fast simulations as example
- Detector Full Simulation Tutorials Geant4 for EIC, how to modify existing detector concepts, and how to integrate a
 new detector into one of the existing detector concepts.

Approach Workflow environment for Yellow Report initiative

Collaborative workspace for EICUG

JupyterLab

web-based interactive analysis environment

(←	$) \rightarrow 0$	C' û	i localhost:8888/lab)								110% •	። 🖂 🧑 🕁		⊻ ∥\	🛛 🏠	Ξ
₽	Most Visi	ited 🛅 ToRead 🛅 H 🛅	Tracking 🚞 EveryRead 🗎		C 🛅 G 🛅 Tr 🛅 Gi	st 🛅 🤇	GitLab 🛅 JLab	🗎 EIC 🗎 Jupy	🖿 B 🖿 D (🖿 VIS 🔘 Kyled	OS Estimating N	🔘 Kalman-a	nd-Bayesian (Dimmersive Math	💮 Femtograp	ohy 2018	>>
С	💭 File Edit View Run Kernel Tabs Settings Help																
		+	± C	🖪 Laune 🗙	■ 10_ru × 🔳 11	_ej ×	■ 12_cc ×	■ 06_oj ×	🖪 07_gŧ ×	🖪 08_uį ×	🖪 Launi 🗡	🖹 01_ei ×	□ 02_N ×	□ 03_o ×	🗅 04_g ×	🗅 05_r	ι×
	•			8 + %	□ □ ► ■	G	Code ~								F	ython 3	0
ź.	Nam	ie 🔺	Last Modified	(^	
~1		data	3 hours ago	[3]:	<pre>tree = uproot.op tracks df = tree</pre>	<pre>cree = uproot.open('./data/eventless_output.root')['eventless']['tree'] tracks df = tree nandas df(["ndg h" "n h" "ny h" "ny h" "nz h"])</pre>											
	• 🖪 0	06_open_charm.ipynb	40 minutes ago													: 1	
	• 🖪 0	07_geometry.ipynb	37 minutes ago	[10]:	<pre>tracks_df['vertical_angle'] = np.arcsin(tracks_df['yy_b']/tracks_df['p_b'])</pre>												
a	• 🗔 (08_uproot_neutron_an	31 minutes ago		v_angle = tracks	_df[tr	angie] = np acks_df.pdg_	b == 2212].v	ertical_ang	.e.values	[p2_0])						
	• 🖪 1	10_run_ejana.ipynb	29 minutes ago		h_angle = tracks	_df[tr	racks_df.pdg_	b == 2212].h	orizontal_ar	gle.values							
_	• 🖪 1	11_ejana_interface.ipynb	27 minutes ago		Horizontal angle (v	$\alpha_h =$	$= \arctan(\frac{p_x}{x})$										
	• 🖪 1	12_config.ipynb	26 minutes ago		nonzontal angle (A	j <i>n</i>	p_z										
	• 🖪 v	widget_example.ipynb	3 hours ago		Vartical angle (ψ : $\alpha_{v} = arcsin(\frac{P_{y}}{V})$												
		01_eic-smear-config.cpp	4 hours ago	p													
		02_NNPSS11-2-nobuil	5 hours ago	<pre>[11]: fig. ax = plt.subplots()</pre>													
		03_open_charm_sm.root	5 hours ago		h, xedges, yedges, im = ax.hist2d(h_angle, v_angle,												
		04_geometryJLEIC.gdml	5 hours ago		<pre>bins=[np.arange(-200,101,5)/1000,np.arange(-150,151,5)/1000], norm=matplotlib.colors.LogNorm()) plt.colorbar(im, ax=ax) plt.xlabel('Horizontal angle (x) [rad]') nlt.vlabel('Vertical angle (x) [rad]')</pre>												
		05_root.example	a day ago														
		output.root	30 minutes ago														
			<pre>plt.title('Neutrons angle distribution')</pre>														
					ax.set_axisbelow plt.grid(True)	(True)											
					plt.show()												
					N	eutron	s angle distribu	ution									
					0.15				103								
					0.10				10								
					P 0.05												
					(Å)				- 10 ²								
					0.00 -	- 7											
					-0.05	_	765°.	•									
					Vei	11			10.								
					-0.10												
					-0.15	-0.10	-0.05 0.00	0.05 0.10	10°								

Horizontal angle (x) [rad]

Jupyter Notebooks

• writing analysis code

[4]:	<pre>jana.plugin('hepmc_reader') \ .plugin('jana', nevents=18000, output='hepmc_sm.root') \ .plugin('eic_smear', detector='jleic') \ .plugin('open_charm')</pre>
r41+	eJana configured
	plugins: hepmc_reader,eic_smear,open_charm
[5]:	<pre>jana.source('/data/herwig6_20k.hepmc')</pre>
[5]:	eJana configured
	plugins: hepmc_reader,eic_smear,open_charm
	sources:
	/data/herwig6_20k.hepmc
[6]:	jana.run()
	Total events processed: 10001 (~ 10.0 kevt)

• visualization of results

• narrative of the analysis

Open charm

The high luminosity at the EIC would allow measurements of open charm production with much higher rates than at HERA and COMPASS, extending the kinematic coverage to large $x_B > 0.1$ and rare processes such as high- r_T jets. Heavy quark production with electromagnetic probes could for the first time be measured on nuclear targets and used to study the gluonic structure of nuclei and the propagation of heavy quarks through cold nuclear matter with full control of the initial state.

JupyterLab environment

bridge to modern data science, e.g.,

- Nature 563, 145-146 (2018): "Why Jupyter is data scientists' computational notebook of choice"
- more than three million Jupyter Notebooks publicly available on GitHub
- collaborative workspace to create and share Jupyter Notebooks
- web-based interactive analysis environment accessible, consistent, reproducible analyses
- fully extensible and modular build a collection of analyses and analysis tools → collection of Yellow Report studies

Jupyter Notebooks

• writing analysis code

[4]:	<pre>jana.plugin('hepmc_reader') \ .plugin('jana', nevents=10000, output='hepmc_sm.root') \ .plugin('eic_smear', detector='jleic') \ .plugin('open_charm')</pre>	
[4]:	eJana configured plugins: hepmc_reader,eic_smear,open_charm	Python
[5]:	<pre>jana.source('/data/herwig6_20k.hepmc')</pre>	
[5]:	eJana configured plugins: hepmc_reader,eic_smear,open_charm sources: /data/herwig6_20k.hepmc	Root/C++
[6]:	jana.run()	
	Total events processed: 10001 (~ 10.0 kevt)	

• visualization of results

• narrative of the analysis

Open charm

The high luminosity at the EIC would allow measurements of open charm production with much higher rates than at HERA and COMPASS, extending the kinematic coverage to large $x_B > 0.1$ and rare processes such as high- r_T jets. Heavy quark production with electromagnetic probes could for the first time be measured on nuclear targets and used to study the gluonic structure of nuclei and the propagation of heavy quarks through cold nuclear matter with full control of the initial state.

 $D^{0} \longrightarrow \pi^{+} \qquad \pi^{+} \bigvee K^{-} \pi^{+} \bigvee K^{-} \pi^{+} \bigvee \phi$

Modular design

Escaping complexity scaling trap

- provide interfaces to internal layers
- interaction between layers must be clear

Modularity each layer must be replaceable

"simnle"	lupyterlah web interface	[3]:	jana.run()		
Simple	Jupyter Lab web interface		Total events processed: 10001 (~ 10.0 kevt)		
			▶ Full log		
"moderate"	analysis scripts, eic-smear, python		- Run command		
			eiopo		
			-Pplugins=beagle_reader,vmeson,event_writer		
"complex"	eJANA, plugins, C++		-Pnthreads=1		
			-Pnevents=10000		
			-Poutput=beagle.root		
expert	JANA, Geant4, ROOT, EicRoot, fun4all		/data/beagle_eD.txt		
• • • • • • •			-Piana:debug plugin loading=1		

../data/beagle_eD.txt

Users and developers work on their **preferred** layer which will be always their simplest layer.

Report EIC Software Status

Broad collection of event generators used for EIC

Monte Carlo Event Generators (MCEG) from BNL task force

The following event generators are available:

∎ ер

- DJANGOH: (un)polarised DIS generator with QED and QCD radiative effects for NC and CC events.
- gmc_trans: A generator for semi-inclusive DIS with transverse-spin- and transverse-momentum-dependent distributions.
- LEPTO: A leptoproduction generator used as a basis for PEPSI and DJANGOH
- LEPTO-PHI: A version of LEPTO with "Cahn effect" (azimuthal asymmetry) implemented
- MILOU: A generator for deeply virtual Compton scattering (DVCS), the Bethe-Heitler process and their interference.
- PYTHIA: A general-purpose high energy physics event generator.
- PEPSI: A generator for polarised leptoproduction.
- RAPGAP: A generator for deeply inelastic scattering (DIS) and diffractive e + p events.

eA

- BeAGLE: Benchmark eA Generator for LEptoproduction UNDER CONSTRUCTION a generator to simulate ep/eA DIS events including nuclear shadowing effects (based on DPMJetHybrid)
- DPMJet: a generator for very low Q2/real photon physics in eA
- DPMJetHybrid: a generator to simulate ep/eA DIS events by employing PYTHIA in DPMJet
- Sartre 🖉 is an event generator for exclusive diffractive vector meson production and DVCS in ep and eA collisions based on the dipole model.

From https://wiki.bnl.gov/eic/index.php/Simulations and available in https://gitlab.com/eic/mceg

Next steps More examples and make common MC productions available on https://hepsim.jlab.org

MCEGs in EIC Software Collection

Pythia8+DIRE

- available in **eic-mceg**
- **soon** in other containers
- next updates for photoproduction, diffractive processes, radiative effects etc.

Ongoing JupyterLab integration

	First, lets import all neccessary modules.						
In [1]:	import os, sys, pythia8 from plotting import MULTHIST import pySesttings as pySs						
	Now we create a Pythia 8 c	object and apply the setti	ngs to define the incoming beams. More settings can be adjust	ed later.			
₩In [2]:	<pre># Setup pythia, apply pythia = pythia8.Pyth py8s.beam_settings(py</pre>						
	You can now set the parameters for the incoming beams:						
	beam A id [Beams:idA]	beam A id [Beams:idA] e-					
	beam B id [Beams:idB]	beam B id [Beams:idB] p					
	beam frame type [Beams:	beam frame type [Beams:frameType] 2: back-to-back beams with different energies, set Beams:eA and Beams:eB					
	CMS energy for Beams:fra	rgy for Beams:frameType = 1 [Beams:eCM] 65.7					
	beam A energy for Beams:frameType = 2 [Beams:eA] 10.8						
	beam B energy for Beams:frameType = 2 [Beams:eB] 100						

Next eSTARlight, Herwig, Sherpa (and MCEGs in previous slide)

Benchmark processes Work with Physics Working Group

Visualization of ep collision

eic-smear

ROOT application for fast simulations

- study sensitivity to known parameterizations
- vary parameters to constrain needed performance
- fast O(1000) events / s
- agile features on request, soon *dE/dx*

Neither a full detector simulation **nor** *Geant4 light*.

Electromagnetic calorimeter in eic-smear

class documentation at www4.rcf.bnl.gov/~eickolja/

det.AddDevice(emcalMidBck);

•

JLEIC Smear (C++)

Smearing depends on type of the particle and its theta/pseudorapidity

Energy smearing for e and gammas	PT and angle smearing for
<pre>if (p.Eta() > -3.5 && p.Eta() < -1.1) { double c1 = gRandom->Gaus(0, 0.02 * sqrt(p.E())); double c2 = gRandom->Gaus(0, 0.001 * p.E()); double c3 = gRandom->Gaus(0, 0.005);</pre>	charged particles
double sigma=c1 + c2+c3; new_e= p.E() + sigma;	double_t mynewPt = gRandom->Gaus(p.Pt(), 0.01 * pow(p.Pt(), 2) + 0.005 * p.Pt());
σ(E) ~ a √E ⊕ b · E ⊕ c	<pre>double_t mynewTheta = gRandom->Gaus(p.Theta(),0.001); double_t mynewPhi = gRandom->Gaus(p.Phi(),0.001);</pre>
Energy smearing for neutrons	VTX smearing for charged particles
	double vtv smear = fabs(gPandom_Caus($0, 25$));
<pre>// Neutron coming to Zero Degree calorimeter if(abs(particle->pdg) == 2112 && p.Theta() < 0.01){</pre>	gRandom->Sphere(x, y, z, abs(vtx_smear));
<pre>// zdc new_e = gRandom->Gaus(p.E(), 1. * sqrt(p.E()));</pre>	PID to be implemented

Detector simulations

EIC

- detector (and physics) simulations rely on Geant4
- energy range is different from LHC
- validation, tuning and extension including test beam studies required

- collaboration with Geant4 Collaboration (liaison: M. Asai)
- Geant4 for EIC
 - Geant4 10.6 recommended (released Dec. 6, 2019)
 - maintain EIC physics list
 - coordinate input for Geant4 validation based on EIC physics list
- Geant4 infrastructure for Yellow Reports initiative
 - common repository for detector R&D for EIC
 - common detector description in Geant4 (C++) and not yet DD4hep (sub-detectors developed in Geant4 (C++))
 - possible common detector naming convention for EIC
 - possible common hits output structure
 - tutorials on how to implement and integrate subdetector in EIC detector concepts

Two solutions proposed

- 1. detector simulations in fun4all
- 2. Geant4 application g4e, part of ESCalate

Why two options?

- At The Software Working Group was caught by the start of the "Yellow Report" effort with two ongoing developments for full simulations:
 - fun4all, originated from within (s)PHENIX, mature and centered around the use of ROOT macros
 - g4e, build up for the EIC (and therefore in a *younger* stage of development) constructed as a pure GEANT4 application (and integrated into JupyterLab environment)
- Each of the two is supported by a core team of developers.
- We put forward both options, leaving the users the freedom to choose base on their coding preferences.
- We will take advantage of the two codes to cross-check few selected and critical results in order to improve our confidence in the outcome of the simulations.

Fun4All + GEANT4

- Mature Framework based on ROOT, steering with ROOT macros
- Modular each detector is its own entity
- No central code needs to be modified when adding new detectors
- Detectors are combined using ROOT macros
- Distribution as singularity container + libraries in cvmfs*
- Daily builds + Continuous Integration
- No geometry model enforced
- Interface to eic-smear: most EIC specific Event generators accessible
- Pre-canned configurations for EIC-sPHENIX and partial JLEIC
- Used to provide input for our EIC detector LOI**
- Generic Volumes (box, cylinder, cone) can be implemented no macro level
- *Installation: <u>https://github.com/EIC-Detector/Singularity</u>

**<u>https://arxiv.org/pdf/1402.1209.pdf</u> <u>https://indico.bnl.gov/event/5283/attachments/20546/27556/eic-sphenix-dds-final-2018-10-30.pdf</u>

For details: see selected Fun4All presentations https://www.phenix.bnl.gov/WWW/publish/pinkenbu/EIC/

Sarte as seen by an EIC detector

10 GeV Au on water phantom (NASA Space Radiation Lab)

Implementing a Detector in Fun4All

Simplest Example, more sophisticated to come: <u>https://github.com/EIC-Detector/g4exampledetector</u>: simple/source: Simplest case - everything hardcoded, only active volumes simple/macro: Fun4All_G4_Example01.C to run the show (and save Hits in ntuple)

Let's call your detector PDirc*, 3 classes need to be implemented : G4PDircSubsystem \rightarrow interface between Fun4All and Detector G4PDircDetector \rightarrow GEANT4 Construct method G4PDircSteppingAction \rightarrow select which quantities to store for each hit *Detector names can be set on the command line but you do not want identically named sources

You will Find that help will always be given at Hogwarts to those who ask For it.

- Dumbledore

Tutorials:

https://github.com/EIC-Detector/tutorials

Join mattermost channel for support: https://chat.sdcc.bnl.gov/eic/channels/fun4all-software-support

Email: Chris Pinkenburg <u>pinkenburg@bnl.gov</u> Jin Huang jhuang@bnl.gov

Example01: block with ¹/₂ cylindrical hole

y1:x1:z1

Geantino Scan to verify geometry using entry/exit coordinates of geantino tracks

ESCalate software stack for EIC simulations

Escalate recent updates

- Detector updates on RHIC beamline and support detectors (Tagger, LMON, roman pods, ZDC, etc.)
- On fly build (Ninja+PCH+Unity build+JOC). Fast partial self compilation on start. Consider all G4E code as ROOT macros but running on optimized C++ speed. Change in a detector? +3 sec once on start.
- Multithreading (still beta). With fast (lower details) configuration get ~1000kHz on 8 cores. Benchmarks and examples are upcoming.
- Updates on parts: Randomized particle guns (g4e and g4epy), root output with flattened files, many others.
- High priority work in process:
 - Updates in the documentation
 - Work on direct python use is being prototyped
 - Examples on TGeo and STEP detectors
 - Examples on eJANA plugins: <u>https://jeffersonlab.github.io/JANA2/index.html</u> (Tutorial Section, HOWTO guide)

To import a subdetector:

- SubDetectorInterface class implementation
- Subscribe to various standard Geant 4 actions (SteppingAction, StackingAction, etc)
- Define subdetector's place in one or many "master" detectors

Accelerator interface

Accelerator design (beam elements)

EicRoot: Example tracking study

<u>Consider vertex tracker + TPC in 3T field; shoot 10 GeV/c pions at θ =75°</u>

Momentum resolution

Once Docker image is downloaded it takes <5 minutes to generate this plot
 1st EIC Yellow Report Workshop, March 19, 2020

Reconstruction software

- Implemented vertexing with ACTS + GENFIT for tracking.
- Expanding to full ACTS tracking.

ESCalate Reconstruction Example: Simplified tracking efficiency analysis

class TrackingEfficiencyProcessor : public JEventProcessor {

```
private:
```

```
std::shared_ptr<JGlobalRootLock> m_lock;
TH1D* h1d_pt_reco;
```

// More histograms

```
public:
```

```
void Init() {
```

```
m_lock = GetApplication()->GetService<JGlobalRootLock>();
h1d_pt_reco = new TH1D("pt_reco", "reco pt", 100,0,10);
}
```

```
void Process(const std::shared_ptr<const JEvent>& event) {
```

```
auto reco_tracks = event->Get<RecoTrack>();
auto mc tracks = event->Get<McTrack>();
```

```
m_lock->acquire_write_lock();
```

```
for (auto reco_track : reco_tracks) {
    h1d_pt_reco->Fill(reco_track->p.Pt());
}
```

```
m_lock->release_lock();
```

Note that this processor knows nothing about which factory created the RecoTracks.

Let's only use Genfit:

\$ ejana
_Pnlugins=g4e read

-Pplugins=g4e_reader,trk_fit,trk_eff,trk_fit_genfit
g4e_output.root

Let's only use ACTS:

\$ ejana
-Pplugins=g4e_reader,trk_fit,trk_eff,trk_fit_acts
g4e_output.root

Forward Quarkonia

Forward Momentum Resolution

Fun4All Reconstruction

Material

budget of

inner tracker

Forward Jet Energy Resolution

- Modularity allows easy re-use of existing components
- Many existing reconstruction modules exist (digitization, granularity, clustering, tracking, jet finding, secondary vertices...)
- Interface to raw data from rcdaq (used in test eRD beams)
- Single Chain from event generator/raw data to final user output, no switching frameworks and impedance mismatches
- Snapshots of chain can be saved, chain can pick up from there Large and active user base

Planning Next Steps

Coordination and communication

• Survey on simulation needs

- Please send us your answers by Friday.
- Results shown in Q&A session on Saturday.
- Fast Simulation Tutorial II: MCEG, eic-smear, JupyterLab:
 - Thursday, April 9. Time will be announced.
 - Remote access via BlueJeans.
 - Will be recorded.

- Software News
 - start making announcements on <u>eicug-software@eicug.org</u>, please subscribe
 - share summary on <a>eicug-users@eicug.org and via monthly newsletter

Google forum (for archive of support requests and start of knowledge base)

EICUG Slack workspace with software-support channel

EICUG Software Working Group

Andrea Bressan (INFN, University of Trieste) Markus Diefenthaler (EIC², Jefferson Lab) Torre Wenaus (Brookhaven Lab)

eicug-software@eicug.org

Workflow environment for EICUG

- **fast and full simulation** available and being extended with community input
- **documentation** started and being improved with community input
- Support will be available

Grow with user input

• excited to be core part EIC Physics and Detector Conceptual Development / Yellow Report

Q & A session on Saturday

BROOKHAVEN

NATIONAL LABORATORY

