DVCS and $\pi^{\rm 0}$

F.-X. Girod

UConn/JLab

Mar 19th 2020

Scenarios 18 GeV $\,\times$ 275 GeV, 10 GeV $\,\times$ 100 GeV and 5 GeV $\,\times$ 40 GeV

Input: Electron-Ion Collider Detector Requirements and R&D Handbook v1.1 Jan 10th 2019 available here

http://eicug.org/web/sites/default/files/EIC_HANDBOOK_v1.1.pdf

Investigating photons resolutions, in particular calorimeter granularity

Electron DIS kinematics scenario 2

DVCS 5 GeV \times 40 GeV

Coverage focused on high x_B and high Q^2 (mostly to save time now) -t extends to high values but dominated by low range

Electrons and photons 5 GeV \times 40 GeV

FX Girod

Single particle resolutiosns 10 GeV \times 100 GeV

Mar 19th 2020 6/ 11

DVCS and π^0

FX Girod

π^0 decay at 10 GeV \times 100 GeV

B_m (°) 3000 2500 2000 1500 1000 500 80 90 E_{sc} (GeV) m_w - m_{PDG} vs E_{**} m - m PDG (GeV) 0.0 0.04 0.02 -0.02 -0.04 -0.06 10 20 80 E_{x^c} (GeV)

π⁰ decay opening angle vs E

Photon angular resolution is essential to discrimate clusters at high energies Both θ and ϕ have $\sigma \sim 0.05^{\circ} < 1$ mrad

Corresponding invariant mass resolution \sim 5 to 20 MeV

Mar 19th 2020 7/11

DVCS π^0 separation 5 GeV \times 40 GeV

Good separation at low energy

FX Girod

103

104

10

18 20

150 200 MM²(eyX) (GeV²)

Mar 19th 2020 8/11

DVCS and $\pi^{\mathbf{0}}$

DVCS π^0 separation 10 GeV \times 100 GeV

Good separation at medium energy

FX Girod

DVCS π^0 separation 18 GeV \times 275 GeV

Challenging background at high energy

- $\bullet~$ Scenarios 18 GeV $\,\times$ 275 GeV, 10 GeV $\,\times$ 100 GeV and 5 GeV $\,\times$ 40 GeV
- First look at DVCS π^0 separation
- Absolute normalization of π^0 to DVCS: need HERA data

- Photon angular resolution is crucial
- First results only, lots of possible improvements
- Other backgrounds also (?)

