Exclusive dijet production

Heikki Mäntysaari Mäntysaari, Mueller, Schenke, PRD 99, 074004 (2019), 1902.05087 [hep-ph] Salazar, Schenke, PRD 100 034007 (2019), 1905.03763 [hep-ph]

> University of Jyväskylä, Department of Physics Finland

EIC Yellow Report Temple meeting, March 20, 2020

Motivation: multi dimensional pictures of nuclei

The most complete description of the partonic structure

Graphics from Y. Hatta

This talk

Theoretical analyses of exclusive dijet production, without feasibility studies. MC generator also in progress? E. Aschenauer, yesterday

Access to Wigner distribution: diffractive dijet production

Y. Hatta, B-W. Xiao, F. Yuan, 1601.01585

• $\Delta = \mathbf{k}_1 + \mathbf{k}_2$ recoil momentum • $\mathbf{P} = \frac{1}{2}(\mathbf{k}_1 - \mathbf{k}_2)$ dijet momentum d $\sigma \sim v_0(1 + 2v_2\cos[2\theta(\mathbf{P}, \Delta)])$ Hatta, Xiao, Yuan, 1601.01585 Hagiwara *et al*, 1706.01765 v_2 connected to elliptic part of gluon Wigner distribution xW_2 :

$$xW = xW_0 + 2xW_2\cos(2\theta(\mathbf{P},\mathbf{b}))$$

Direct connection in the "correlation limit" $(|\mathbf{P}| \gg |\mathbf{\Delta}|)$ at $Q^2 \rightarrow 0$

CGC calculation for dijet production

Altinoluk, Armesto, Beuf, Rezaeian, 1511.07452

Y. Hatta, B-W. Xiao, F. Yuan, 1601.01585

- $d\sigma \sim \mathbf{v_0}(1 + 2\mathbf{v_2}\cos[2\theta(\mathbf{P}, \mathbf{\Delta})])$
 - $\mathbf{\Delta} = \mathbf{k}_1 + \mathbf{k}_2$
 - $\mathbf{P} = \frac{1}{2}(\mathbf{k}_1 \mathbf{k}_2)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^{2}\mathbf{P}\mathrm{d}^{2}\mathbf{\Delta}} \sim \int_{\mathbf{b}\,\mathbf{b}'\,\mathbf{r}\,\mathbf{r}'} e^{-i(\mathbf{b}-\mathbf{b}')\cdot\mathbf{\Delta}} e^{-i(\mathbf{r}-\mathbf{r}')\cdot\mathbf{P}} \mathcal{N}(\mathbf{r},\mathbf{b}) \mathcal{N}(\mathbf{r}',\mathbf{b}') \otimes \cdots$$

 ${\bf P}$ and ${\boldsymbol \Delta}$ are conjugates to dipole size and impact parameter.

- Coordinate space:
 Dipole amplitude N(r, b) depends on θ(r, b)
- Momentum space: Cross section depends on θ(P, Δ)
- Mixed space:
 Wigner distribution *xW*(**k**, **b**) depends on θ(**k**, **b**)

Dijet production probes how dipole-target interaction depends on the dipole orientation

EIC kinematics used here

- $Q^2 = 1 \text{GeV}^2$
- W = 100 GeV
- $|\mathbf{P}|$: "mean jet p_T "
- $|\Delta|$: recoil
- Longitudinal momentum fraction $z \in [0.1, 0.9]$

I mostly consider charm jets here (small $p_T \approx$ charmed mesons), to avoid contribution from large dipoles

Note: one may have $v_1 \neq 0$, depending on kinematics (backup!)

Baseline study

Dipole-proton scattering N: IPsat parametrization (dependence on $T(\mathbf{b})$ and saturation) Introduce $\theta(\mathbf{r}, \mathbf{b})$ dependence Altinoluk, Armesto, Beuf, Rezaeian, 1511.07452 Calculate two quark production (quark \approx jet) $\Delta = \mathbf{k}_1 + \mathbf{k}_2, \mathbf{P} = \frac{1}{2}(\mathbf{k}_1 - \mathbf{k}_2)$

Dijet cross section has no dependence on $\theta(\mathbf{P}, \mathbf{\Delta})$ if $\tilde{c} = 0$ (dashed line, standard IPsat)

Heikki Mäntysaari (JYU)

March 20, 2020 5 / 14

Realistic setup: angular correlations from CGC

Initial conditon x = 0.01

- IPsat $Q_s^2(\mathbf{b}) \Rightarrow$ color charge density ρ
- MV model, local Gaussian $\langle
 ho
 ho
 angle \sim Q_s^2$
- $\bullet \ \, \text{Yang-Mills Eqs} \Rightarrow \text{Wilson lines} \Rightarrow \mathcal{N}$
- Infrared regulator: mass *m*

Small-x evolution

- JIMWLK equation
- Fixed and running coupling
- Infrared regulator: mass m

H.M, N. Mueller, B. Schenke, 1902.05087 $\mathcal{N}(\mathbf{r}, \mathbf{b}) = v_0(1 + 2v_2 \cos[2\theta(\mathbf{r}, \mathbf{b})])$ Evolution suppresses elliptic modulation Expect to see that also in dijet production

Parameters constrained by HERA F_2 and J/Ψ data H.M., B. Schenke 1607.01711, 1806.06783

Heikki Mäntysaari (JYU)

Charm dijets, dependence on dijet momentum $|\mathbf{P}| (\gamma^* + p \rightarrow \text{jet} + \text{jet} + p)$

Close to correlation limit $|\Delta| = 0.1$ GeV (higher momenta later), $Q^2 = 1$ GeV² here ls it experimentally possible to separate the two polarizations? Diffractive dips in Δ and (longitudinal) P spectra (Δ not shown) P conjugate to dipole size $\mathbf{r} \sim$ size of the projectile $\sim 1/\sqrt{m_c^2 + z(1-z)Q^2}$

Charm dijets, extracted v_2 ($\gamma^* + p \rightarrow \text{jet} + \text{jet} + p$)

- Close to correlation limit ($|\Delta| = 0.1$ GeV), where direct connection to Wigner: very small modulation ~ few% (L) or ~ 0.1% (T, dominates)
- Small sensitivy on IR regulators m, \tilde{m} and fixed/running α_s (different lines)

 $\mathrm{d}\sigma\sim \textit{v}_{0}(1+2\textit{v}_{2}\cos[2 heta(\mathbf{P},\mathbf{\Delta})])$ H.M, N. Mueller, B. Schenke, 1902.05087

Energy dependence of total v_2 (transverse + longitudinal)

Elliptic part of the cross section

Modified MV model, $\theta(\mathbf{r}, \mathbf{b})$ dependence from color charge density gradients Salazar, Schenke, 1905.03763

Modulation maximal at $|\mathbf{P}| \approx 1$ GeV. Here $|\mathbf{\Delta}| = 0.1$ GeV, modulation again small $\sim 0.1\%$.

Heikki Mäntysaari (JYU)

Larger modulation away from correlation limit

Salazar, Schenke, 1905.03763

- Modulation increases with $|\mathbf{\Delta}|$
- Larger Q², smaller modulation: smaller dipoles effectively see smaller density gradients
- Approximations of Salazar, Schenke, 1905.03763 are not reliable at large $|\Delta|$, but a full calculation is possible
- Similar observation found in

Hatta, Mueller, Ueda, Yuan, 1907.09491

• Recall: direct connection to the Wigner distribution in the correlation limit $|\mathbf{P}| \gg |\mathbf{\Delta}|$

Coherent dijet with gold targets

Salazar, Schenke, 1905.03763 Here $|\mathbf{\Delta}| = 0.1$ GeV, resulting in small modulation (need again higher $|\mathbf{\Delta}|$)

Heikki Mäntysaari (JYU)

Dijets

Wigner and Husimi distributions - gluons in the mixed space

 $xH = xH_0 + 2xH_2 \cos 2\theta(\mathbf{P}, \mathbf{b})$ (Wigner smeared over I), $xW = xW_0 + 2xW_2 \cos 2\theta(\mathbf{P}, \mathbf{b})$

- Coherent (charmed) dijet production calculable from the CGC framework
- Angular modulation in the cross section due to intrinsic impact parameter-transverse momentum correlations in the gluon distribution
- \bullet Elliptic modulation tiny in the correlation limit $|\textbf{P}| \gg | \textbf{\Delta} |$
- Interesting kinematical region $|\textbf{P}|\sim$ a few GeV, $|\textbf{\Delta}|\sim$ GeV Can we extract \sim 10% modulation?
- This region is also sensitive to multi gluon correlations in inclusive and incoherent diffractive dijet production H.M. N. Mueller, F. Salazar, B. Schenke, PRL124, 112301 (2020), 1912.05586
- Connection to Wigner direct in the correlation limit. Can also compute Wigner and Husimi gluon distributions (with x evolution!) from the same CGC framework

BACKUPS

Q^2 dependence

Wigner and Husimi distributions - to the mixed space

Compare predicted dijet v_n to gluon Wigner and Husimi distributions Hagiwara, Hatta, Ueda, 1609.05773

Wigner distribution $xW(x, \mathbf{P}, \mathbf{b})$	Husimi distribution $xH(x, \mathbf{P}, \mathbf{b})$
 Most complete description 	• Wigner + with Gaussian smearing
 No probabilistic interpretation (uncertainty principle) 	 Positive definite, probabilistic interpretation
 Not positive definite 	• Dependence on the smearing parameter /
• Large dipoles important	• Large dipoles suppressed by /

$$xW(x, \mathbf{P}, \mathbf{b}) = \frac{-2N_{\rm c}}{(2\pi)^2 \alpha_s} \int_{\mathbf{r}} e^{i\mathbf{P}\cdot\mathbf{r}} \left(\frac{1}{4}\nabla_{\mathbf{b}}^2 + \mathbf{P}^2\right) \mathcal{N}(\mathbf{r}, \mathbf{b}, x) = xW_0 + 2xW_2 \cos[2\theta(\mathbf{P}, \mathbf{b})].$$

$$xH(x, \mathbf{P}, \mathbf{b}) = \frac{1}{\pi^2} \int_{\mathbf{b}'\mathbf{P}'} e^{-(\mathbf{b}-\mathbf{b}')^2/l^2 - l^2(\mathbf{P}-\mathbf{P}')^2} xW(x, \mathbf{P}', \mathbf{b}') = xH_0 + 2xH_2 \cos[2\theta(\mathbf{P}, \mathbf{b})]$$

Here $\textit{I}=1 \text{GeV}^{-1}$ corresponds to coordinate space smearing distance ~ 0.2 fm

Husimi distribution, closer look

Study Husimi distribution and define $v_2^H = xH_2/xH_0$, find $v_2^H \sim 0.1 \dots 1\% \sim$ dijet v_2

 Increasing |v₂^H| at small |P|: proton grows, and gradients at scale ~ / start to contribute

• $v_2^{\rm H} \rightarrow 0$ at large **P**: target smooth at

small distance scales

Isolating kinematical effects effects

$$\mathbf{\Delta} = \mathbf{k}_1 + \mathbf{k}_2, \mathbf{P} = \frac{1}{2}(\mathbf{k}_1 - \mathbf{k}_2)$$

- Probed $x_{\mathbb{P}}$ depends on $\theta(\mathbf{P}, \mathbf{b}) \Rightarrow v_1 \neq 0$
- Vanishes if $z_{min} = 1 z_{max}$

Alternative: $ilde{\mathbf{P}} = (1-z)\mathbf{k_1} - z\mathbf{k_2}$ Dumitru et al, 2018

• $x_{\mathbb{P}}$ independent of $\theta(\mathbf{P}, \mathbf{b})$, no v_1

•
$$v_2 \neq 0$$
 with no correlations in IPsat

Proton size dependence

