Separating coherent and incoherent vector meson production at an EIC

Presented at the 1st EIC Yellow Report Workshop March 19-21, 2020 Spencer Klein, LBNL

- Coherent and incoherent production
- Vector meson kinematics*
 - Detectability for different mesons
 - Differences between coherent and incoherent
- Nuclear Breakup
- Overlapping events
- Nuclear breakup without neutrons

*Work done in collaboration with Sam Heppelman

Coherent and incoherent vector meson production

- Coherent photoproduction probes the average nuclear distribution
- Incoherent photoproduction is sensitive to event-by-event changes in the nuclear configuration Ω (positions of nucleons, gluon hot spots, etc).
- In the Good-Walker formalism:

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections (}\Omega\text{)}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes (}\Omega\text{)}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$$

So, highly desirable to analyze coherent & incoherent in parallel

SK & H. Mantysaari, Nature Phys. Reviews 1, 662 (2019)

Vector meson production on proton targets

- HERA cross-sections fit by
- $\sigma(W) = XW^{\epsilon} + YW^{-\eta}$
 - W=γp CM energy
- *XW*[€]: Pomeron (gluons)
 - $\epsilon \sim > 0.2 meson dependent$
 - ♦ J^{PC}=0⁺⁺
 - Important for low-x
- *YW^{-η}*: 'Reggeon' (~~qqbar)
 - **•** η~~1.5
 - Summed light-quark meson trajectories
 - ~valence quarks
 - Important for large x
 - Zero for ϕ , J/ ψ , etc.
- Q² dependence power law

Photoproduction data

Photoproduction & electroproduction model

- Convolution of photon flux from electron with $\sigma(\gamma p Vp)$
 - Both depend on Q²
- Weizsacker-Williams photon flux (with non-zero Q²)
- VM cross-sections parameterized from HERA data/theory....
 - Reggeon and Pomeron exchange
 - Q² dependence via a power law from HERA data
- Vector mesons retain the photon spin
 - For Q² ~ 0, transversely polarized
 - As Q² rises, longitudinal polarization enters
 - Spin-matrix elements quantified with HERA data
- Embodied in eSTARlight code, available at: http://starlight.hepforge.org

Q² dependence of cross-section

Power law based on HERA data

$(\mathbf{W}, \mathbf{O}^2) = f(\mathbf{W}, \mathbf{O}^2, \mathbf{O}) \left(-M_V^2 \right)$	Meson	c_1	$c_2 \ (10^{-2} {\rm GeV}^{-2})$
$\sigma_{\gamma^*A \to VA}(W,Q^{-}) \equiv f(M_V)\sigma(W,Q^{-} \equiv 0) \left(\frac{1}{M_V^2 + Q^2}\right)$	ρ	2.09 ± 0.10	0.73 ± 0.18
$m = c + c (O^2 + M^2)$	ϕ	2.15 ± 0.17	0.74 ± 0.46
$n = c_1 + c_2(Q + M_V)$	J/ψ	2.36 ± 0.20	0.29 ± 0.43

- Only measured for a smallish number of mesons
 - Source of uncertainty for others
- This determine how high in Q² the EIC can probe

Light VM on nuclear targets

- (Too) Naïve approach: add amplitudes, with phase factor
 - $d\sigma/dt|_{t=0} = |\Sigma_i Ai exp(ikr_i)|^2$
- A dipole traversing a nucleus may interact with multiple nucleons
- Standard approach: Glauber calculation
 - Accounts for multiple interactions
 - In RHIC & LHC ultra-peripheral collisions, Glauber over estimates ρ photoproduction
 - Including high-mass photon inelastic diffraction in a Gribov-Glauber calculation leads to good agreement with the data

4.0

3.0

mVMD-GGM γ +Pb $\rightarrow \rho$ +Pb

80

L. Frankfurt et al., Phys.Lett. B752, 51 (2016)

EIC photoproduction kinematics

- Maps photon energy onto rapidity
- $k = \frac{M}{2} \exp(y)$
- y=In(2k/M)
- Reggeon activity strongest at low photon energies
 - Hadron-going direction

SK & M. Lomnitz, Phys. Rev. C99, 015203 (2019)

Ψ (2S) & Y photoproduction at eRHIC

- 18 GeV e⁻ on 275 GeV protons
- σ=1.4 nb (1/6 of σ(J/ψ))
 - ♦ 14 million events in 10 fb⁻¹
- σ(Y(1S))=0.01σ(ψ')
 - 140,000 events/10fb⁻¹
 - ~3,000 each to ee, μμ
 - ~3,000 near-threshold events
 - ~75 each to ee, μμ
 - More central than ψ'

Ψ (2S)->ee lepton pseudorapidities

- Lepton pseudorapidity depends on Y(2S) rapidity, p_T and polarization (which depends on Q²)
- Leptons from most near-threshold (k<50 GeV target frame) ψ(2S)->II decays have -5<y<-2
 - Good acceptance required in hadron-going direction
 - N.b. Br(ψ (s)->ee or $\mu\mu$ is 0.7%. Plus J/ $\psi\pi^+\pi^-$
- Rates for Y(1S) usable.
- Higher ψ states

Choosing mesons: the 2012 White Paper

- Focused on the J/ ψ and ϕ
- $J/\psi \rightarrow I^+ I^-$ is easy
- - the K[±] have p=135 MeV/c in the frame
 - OK at higher Q², where the φ has a kick in p_T
 - Not OK at Q²=0
 - How important is Q²=0?
- An alternate approach: ϕ -> e⁺e⁻, $\mu^+\mu^-$
 - Branching ratio is only 3*10⁻⁴ each, but, rates are useful
 - 70,000 (80,000) per 10 fb⁻¹/A for ep(eA)
 - Requires good PID

More mesons

- Lighter mesons correspond to larger dipoles which display more shadowing
 - Reach lower $Q_{tot}^2 = Q_{\gamma}^2 + M_V^2$
- Want a systematic study
 - ρ, ω, φ, J/ψ,y',Y(1S),Y(2S),Y(3S)
- Detector requirements
 - Separate Y(1S), Y(2S), Y(3S)
 - Reconstruct low p_T kaons from φ

Mantysaari and Venugopalan, Phys. Lett. **B781**, 664 (2018)

σ and rates for vector mesons,

- Coherent rates are for 10 fb⁻¹/A integrated luminosity
- Coherent ep and eA rates/integrated luminosity are similar
 - But ep interactions have much larger |t|
- Incoherent rates ~~< σ(ep->Vp)*A * ∠ eA
 - ♦ A factor of ~ a couple over-estimate in UPCs
 - ~~ 1/A times coherent rates

• Y rates are moderate – enough to be useful for a wide Q² range

Photoproduction: Q²<1 GeV²

Accelerator	σ				Number of events					
	$ ho^0$	ϕ	${ m J}/\psi$	ψ'	$\Upsilon(1S)$	$ ho^0$	ϕ	J/ψ	ψ'	$\Upsilon(1S)$
eRHIC - ep	14.0 nb	1.7 nb	570.0 pb	120.0 pb	2.4 pb	140 mega	17 mega	5.7 mega	1.2 mega	24 kilo
eRHIC - eA	$730.0~\rm{nb}$	$110.0~\rm{nb}$	$77.0~\mathrm{nb}$	$19.0~\rm{nb}$	$200.0~\rm{pb}$	37 mega	5.6 mega	3.9 mega	960 kilo	10 kilo

Electroproduction: Q²>1 GeV²

				•						
Accelerator	σ				Number of events					
	$ ho^0$	ϕ	${ m J}/\psi$	ψ'	$\Upsilon(1S)$	$ ho^0$	ϕ	J/ψ	ψ'	$\Upsilon(1S)$
eRHIC - ep	$5.0 \ \mu b$	$230.0~\rm{nb}$	8.5 nb	1.4 nb	14.0 pb	50 giga	2.3 giga	85 mega	14 mega	140 kilo
eRHIC - eA	$870.0~\mu{\rm b}$	55.0 $\mu {\rm b}$	$1.9~\mu{\rm b}$	$320.0~\rm{nb}$	1.2 nb	44 giga	2.8 giga	100 mega	16 mega	60 kilo

SK & M. Lomnitz, Phys. Rev. C99, 015203 (2019)

ep and eA rapidities

- Differences due to...
- Lower per-ion beam energy shifts VM in electron-going direction
- Coherent requirement limits p_z from nucleus
 - $p_z = M_V^2/2k < hbar/R_A$
 - Cuts off production in hadron going direction

Can only probe x> 0.03

ep collisions at the eA beam energy are a good proxy for incoherent photoproduction

Kinematics of coherent & incoherent production

- d σ /dt depends on nuclear size
 - Naively t_{max} ~ hbar/R_A
 - For incoherent production
 - ∗ r_p ~ 0.7 fm
 - Proton dissociation also possible
 - Effective r even smaller
- Otherwise, indistinguishable, except for nuclear breakup
- How well can we use nuclear breakup to classify events?
 - Why do we get this wrong
 - From physics
 - From detector inadequacies

SK & M. Lomnitz, Phys. Rev. C99, 015203 (2019) & White Paper

Zero neutrons from nuclear breakup

- $\gamma^{(*)}A \rightarrow J/\psi X @ RHIC(EIC)$ energies
- Neutron emission caused by recoiling struck nucleon
- No neutrons in ~~ 15% of cases
 - γ emission
- RELDIS code predicts that 3% of electromagnetic dissociation events (of Pb at the LHC) do not result in neutron emission
- These events are important in kinematic (t) regions where incoherent interactions dominate.
 - ♦ i. e. diffractive dips, large t
- More specific/detailed calculations are needed

Strikman, Tverskoy and Zhalov, Phys. Lett. **B626**, 72 (2005); ALICE Phys. Rev. Lett. **109 (2012)** 252302

Pileup backgrounds

 σ (eAu -> eAu*) at eRHIC is 31 mb

- For giant dipole resonance excitation, the photon energy is ~< 20 MeV in nuclear frame, <~ 100 keV in accelerator frame, so the electron remains in the beam.
- Rate = σ* ∠ = 3.1*10⁻²⁶ cm² * (10³⁴/cm²s/197) = 1.5 M breakup/s
- Collision rate = 25 MHz
 - 1 breakup/16 crossings
 - False incoherent VM prod = coherent VM rate/16
- A lesser issue at top energy/lower luminosity
- Difficult to measure incoherent J/ψ at small t (t<~0,005 GeV²)

SK, Phys. Rev. ST Accel. Beams **17**, 121003 (2014)

Deuteron breakup pileup rate

Steliminary

Conclusions

Coherent and incoherent photoproduction are deeply linked.

- Theoretically, the Good-Walker formalism links them.
- Experimentally, they look very similar, differentiated only by nuclear breakup.
- The EIC will be able to study a wide variety of vector mesons, probing states containing different quarks and wave functions.
 - Studying the full range of VM is desirable to fully map out saturation as a function of x,Q²
- Bjorken-x maps into final state rapidity. To cover a wide range of x requires a wide-acceptance detector.
- Some incoherent photoproduction does not lead to neutron emission. We urgently need to quantify this fraction.
- Pileup events can make coherent photoproduction look incoherent.

Angular definitions

V rest frame

Rapidity vs. Q²

The dipole approach for heavier VM

- Needed to incorporate transverse size into calculation
- Start with basics: $\sigma = |\langle \Psi_{\gamma} | \mathbf{M} | \Psi_{V} \rangle|^{2}$
- Treat the qq pair as a dipole with size r
 - Need VM and photon wave functions, matrix element as f(r)
 - σ ~ r²
 - r scales with 1/Q, but relationship is not simple
 - Different matrix elements for different nuclear models
 - pQCD, colored glass condensate, etc.

$$A(K,\Omega) = 2i \int d^2 \mathbf{r}_T \frac{dz}{4\pi} d^2 \mathbf{b}_T e^{-i\mathbf{b}_T \cdot \mathbf{k}_T/\hbar} \\ \times \Psi^*(\mathbf{r}_T, z, Q^2) \Psi_V(\mathbf{r}_T, z, Q^2) N_\Omega(\mathbf{r}_T, \mathbf{b}_T)$$

Impact-parameter dependent formalism allows for calculations of do/dt, and, with it, changes in the effective shape of the nucleus at different x,Q²