Irfu CCCC saclay

Electronics/DAQ sub working group for the EIC yellow report Temple workshop Damien Neyret CEA Saclay IRFU/DPhN 20/03/2020

Remarks on front-end part

Irfu CCC saclay

Strongly depends of kind of detector to read

- Amplitude and shape of the signals, dynamics of the signals, detector capacitance, number of channels
- Measurement to be done: amplitude, timing, position (barycenter of channels), etc... What resolution for each kind of measurement ? What peaking time ? What expected rate per channel ?
- What context ? Particle fluxes, electronics occupancy, electronics noise level What DAQ trigger scheme ? Hard/soft trigger, continuous read-out, etc...

Hardware aspects

A lot of existing chips: amplifiers/shapers, digitizers, analog and digital buffers,... Will be obsolete in 10 years, but can be base of development for future EIC read-out Choices to study there: new ASICs ? IP in FPGA ? Integrated analog + digital chips ? Electronics directly integrated into detectors ?

First steps to reach

Overview on kind of detectors to read \rightarrow inputs from detector WG

 \rightarrow request for information sent to them (cf next slide)

Foreseen experimental conditions (physics and background rates, particle multiplicities, event sizes, etc...)

 $\rightarrow\,$ information expected from physics WG

Summarize state of the art on read-out electronics: existing chips for each kind of detectors, foreseen evolution, projects of future read-out chips

 \rightarrow 1 page summary for each chip, or electronics integrated in detector

20 March 2020

Needed information for each considered detector

Irfu

saclay

Information about the detector

Kind of detector: gaseous, solid (silicon, other), scintillating (fibers, slabs,...), calorimeters, etc...

Characteristics of the signals: amplitude, capacitance, intrinsic noise,...

Foreseen number of channels

Estimation of average and peak rate per channel at nominal EIC conditions Estimation of background level: physics background, low energy particle radiation,...

Detector read-out

Data to be acquired for each channel: hit time, hit amplitude, digitized waveform,...

If a type of front-end electronics is already considered for the read-out

If a front-end electronics is already integrated in the detector structure (\rightarrow specific page to fill)

Environment of electronics: magnetic field, temperature, pressure Needs about time synchronization, resolution of time synchronization

Remarks

Early stage of the WG studies \rightarrow we don't expect precise numbers, but first estimate would be important to start to discuss on possible front-end solutions Willing to work together with detector WGs on definition of the front-end electronics