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The Incomplete Hadron: Mass

Puzzle “Mass without mass!”
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Higgs mechanism ‘ | Dynamics of gluons
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The light quarks acquire (most of) their
masses as effect of the gluon cloud.

The strange quark is at the boundary -
both emergent-mass and Higgs-mass
generation mechanisms are important.

Proton: Mass ~ 940 MeV

preliminary LQCD results on mass budget,
or view as mass acquisition by DCSB

Pion: Mass ~ 140 MeV

mass enigma — gluons vs Goldstone boson

Kaon: Mass ~ 490 MeV
at a given scale, less gluons than in pion

Emergent mass of
the visible universe




Technique - Towards the Pion/Kaon SF

UThe Sullivan process can provide reliable access to a meson target as t
becomes space-like if the pole associated with the ground-state meson is the
dominant feature of the process and the structure of the (off-shell) meson
evolves slowly and smoothly with virtuality.
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dRecent theoretical calculations found that for -t < 0.6 GeV?, changes in pion
structure do evolve slowly so that a well-constrained experimental analysis
should be reliable, and the Sullivan processes can provide a valid pion target.

U To check these conditions are satisfied empirically, one can take data covering
arange in t and compare with phenomenological and theoretical expectations.



Feasibility — Versatility and Luminosity is Key

Why would pion and kaon structure functions, and even measurements
of pion structure beyond (pion GPDs and TMDs) be feasible at an EIC?
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Meson SF — Forward Detector Requirements

Need excellent detection capabilities, and good resolution in —t

O Reconstruction of energy and position to sufficiently constrain the
scattering kinematics and 4-momentum of the pion

O FFQ and zZDC: ép, /p ~104, 8p~20 MeV, complete coverage to p=0

U Good hadronic calorimetry to for large-x resolution

Forward Geometric Detection
Particle Efficiency (at small —t)
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Meson SF — Forward Detector Requirements

Need excellent detection capabilities, and good resolution in —t

o Final states (A, X) also require detection of decay products, which
have to be tracked though the very forward spectrometer
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Meson SF - Key Experiments at the EIC

A.C. Aguilera et a., Eur. Phys. J. A55 (2019) no.10, 190

Gray: existing D-Y and LN data

O Hadron masses in light quark systems

» Pion and kaon parton distribution
functions (PDFs) and generalized
parton distributions (GPDs)

' Q2=10 GeV?

O Gluon (binding) energy in Nambu-
Goldstone modes
» Open charm production from pion and
kaon

L Mass acquisition from Dynamical Chiral
Symmetry Breaklng (DCSB) 1t DSE analysis (fl'andyeta/.,
fully numerical DSE solutions)

> Pion and kaon form factors [
0.0t 9luon content of the kaon
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O Strong vs. Higgs mass generating
mechanisms

» Valence quark distributions in pion and
kaon at large momentum fraction x

O Timelike analog of mass acquisition

» Fragmentation of a quark into pions or kaons




