

Evaluation of Small Photo-Sensors in High Magnetic Fields for EIC PID Detectors

Yordanka Ilieva

University of South Carolina

for the **EIC PID Collaboration**

1st EIC Physics and Detector Conceptual Development Workshop March 19–21, 2020

Photon Sensor Parameters for EIC PID Cherenkov

Detectors

Parameter	DIRC	mRICH	dRICH
Gain	$\sim 10^{6}$	$\sim 10^{6}$	$\sim 10^{6}$
Timing Resolution	≤ 100 ps	≤ 800 ps	≤ 800 ps
Pixel Size	2–3 mm	≤3 mm	≤ 3 mm
Dark Noise	$\leq 1 \text{kHz/cm}^2$	$\leq 1 \mathrm{MHz/cm^2}$	$\leq 1 \mathrm{MHz/cm^2}$
Radiation Hardness	Yes ¹⁴	Yes ¹⁴	Yes ¹⁴
Single-photon mode operation?	Yes	Yes	Yes
Magnetic-field immunity?	Yes (1.5–3 T)	Yes (1.5–3 T)	Yes (1.5–3 T)
Photon Detection Efficiency	≥ 20%	≥20%	≥20%

Objective of High-B Sensor Program of eRD14

To identify the limitations of commercially-available MCP-PMT design and operational parameters for High-B operations.

High-B Facility at Jefferson Lab

- The PID-detector sensors would be located in a volume of a non-uniform magnetic field of
 - varying magnitude
 - varying direction
- Photosensor performance needs to be evaluated as a function of
 - B-field strength and orientation relative to sensor

- Purpose: Evaluation of small-PMT gain, efficiency, and timing resolution in B fields
- Commissioned in July/August 2014
- Data taking: November 2014
- People: SB: P. Nadel-Turonski, JLab: C. Zorn,
 J. McKisson; CU: G. Kalicy, USC: Y. Ilieva,
 E. Bringley, C. Barber, J. Rapoport, A. Rowland,
 B. Tumeo; UNH: T. Cao, IU: C. Gleason,
 ODU: K. Park, L. Allison

Facility Capabilities

Major Components

Magnet:

- superconducting solenoid
- max. field: 5.1 T at 82.8 A
- 12.7–cm (5–inch) diameter warm bore
- length of bore: 76.2 cm (30 inch)
- central field inhomogeneity: ≤5×10⁻⁵ over a cylindrical volume of a diameter of 1.5 cm and length of 5 cm

Test Box:

- non-magnetic, light-tight
- cylindrical shape: $d_{in} \sim 4.5$ inch, L ~ 18 inch
- allows for rotation of sensors
- light source (LED or fast laser)

Functionality:

Timing resolution, Gain, Ion Feedback, Efficiency

Gain Characterization of Single-Anode MCP PMTs

Photonis PP0365G

pore size: 6 μ m max. gain: ~10⁵ QE: 18% at 470 nm

Photek PMT210, PMT240

pore size: 3 μm, 10 μm max. gain: 10⁶ QE: 15% at 470 nm

Sensor Orientation Capabilities

φ: rotation about Z'
θ: rotation about Y(Y')

Holder: balance of magnetic torque

Turntable: rotation about Y(Y') axis

Z' (along sensor's axis)

Z (along B-field)

Gain Characterization of Single-Anode MCP PMTs Results at 0 deg

- 5% preliminary uncertainty

- 5% preliminary uncertainty

Gain Characterization of Single-Anode MCP PMTs

Results at other angles

Gain Characterization of Single-Anode MCP PMTs Overview

- Smaller pore size yields better gain performance in B-fields
 - 3 μm : about a factor of 6 decrease of signal from 0 T to 4 T.
 - 6 μ m: about a factor of 15 decrease of signal from 0 T to 3 T.
- B-field gain performance varies among different types of sensors

Shape of gain B-field dependence at various polar angles strongly depends on the sensor.

Azimuthal dependence strongly correlated with polar angle.

Overall, reasonable performance up to 2 T.

• Design optimizations needed if the orientation of the sensors relative to the field varies significantly.

Photonis XP85112, 10 µm pore size

Hamamatsu R10754-07-M16X 10 µm pore size

- Measurements performed at 96% of maximum allowed high voltage.
- 10-µm sensor
 - Delivers signals up to about 2 T at standard orientation.
 - Delivers signals up to about 1.5 T at larger angles.
- 25-µm sensor
 - At both orientations, the sensor produces signals up to about 1.2 T.

Photonis XP85112

- Measurements performed at 96% of maximum allowed high voltage.
- Data
 - Maximum gain at 0.3 T.
 - 50% gain: 1.3 T.
 - Value of B_{max} strongly depends on orientation.
 - The larger the polar angle, the lower B_{max}.

- Efficiency: $\epsilon = N_{1phe}/N_{ped.}$
- At θ=20° between the sensor and the B-field axes, the efficiency drops continuosly as B increases even though the gain shows a maximum at 0.3 T.
- An increase of $HV_{photocathode-MCP1}$ by 200 V (close to maximum allowed) recovers only about 13% of the efficiency (θ =20°).

 $\Delta = Rate(A_{thr} = Pedestal) - Rate(A_{thr} = 233)$. $\overline{\Delta} = 0.13$. Reported above: $Rate(A_{thr} = 233) + \overline{\Delta}$

- At all voltages the ion rate is below 2%.
- Results suggest that ion-feedback is primarily driven by HV.
- Ion-feedback rate dependence on B-field magnitude is relatively weak.

Future Work

FY20

- Characterize a 32x32 10-µm pore size Planacon XP85122
- Characterize an 8x8 6-µm pore size Photek sensor.

Timing resolution, gain, efficiency, ion feedback

FY21 - FY23

- Prepare for large-scale characterization of MCP PMTs for DIRC prototype using planned SiREAD readout (share resources at JLab with INFN-Ferrara, ANL LAPPD project)
 - cross talk
 - uniformity
 - gain, timing, efficiency per channel

The End

Facility Capabilities

Major components

A picosecond laser added in Summer 2018 (procured by ODU)

Laser setup (JLab Detector Group)

Laser safety system (JLab electronics Group)

Facility Capabilities

Major components

Gain Characterization of Single-Anode MCP PMTs

Studies of Azimuthal Angle Dependence

φ=90°

Gain Characterization of Single-Anode MCP PMTs

Studies of Azimuthal Angle Dependence

- operating voltage: -2.6 kV
- no normalization applied
- overall data suggest that the total collected charge depends on the ϕ angle, especially above 1 T
- the ϕ dependence is strongly correlated with θ

Azimuthal-angle dependence is correlated with the polar angle

- $\theta = 0^{\circ}$ minimum at $\phi = 180^{\circ}$
- $\theta = 10^{\circ}$ minimum at $\phi = 270^{\circ}$
- $\theta = 20^{\circ}$ no characteristic features