A LGAD-based TOF for EIC

- Leveraging experience with HL-LHC upgrades

Frank Geurts, <u>Wei Li</u> (Rice University) Constantin Loizides (Oak Ridge National Lab)

in collaboration with Artur Apresyan (FNAL), Nicolo Cartiglia (INFN Torino)

The 1st EIC Yellow Report Workshop, Temple University

A LGAD-based TOF for EIC

- Leveraging experience with HL-LHC upgrades

Frank Geurts, <u>Wei Li</u> (Rice University) – CMS, STAR Constantin Loizides (Oak Ridge National Lab) – ALICE

in collaboration with Artur Apresyan (FNAL), Nicolo Cartiglia (INFN Torino)

The 1st EIC Yellow Report Workshop, Temple University

<u>A Hermetic TOF for CMS at the HL-LHC</u>

Barrel Timing Layer (BTL): lnl<1.5

- LYSO bars + SiPM readout
- Thickness ~ 40 mm

CMS

- Surface: ~38 m²; Channels: 332k
- Radiation: 2x10¹⁴ n_{eq}/cm²

Endcap Timing Layer (ETL): 1.6<lnl<3.0 Pileup mitigation in pp

- Si with internal gain (LGAD)
- Thickness ~ 45 mm for two layers
- Surface: ~14 m²; Channels: 8.5 M
- Radiation: 2x10¹⁵ n_{eq}/cm²

Particle ID in HI

Time resolution:30-50 ps ETL ETL BTL also serve as tracker layers Strong involvement of HI groups in ETL

- Pixel size: 1.3 x 1.3 mm²
- Thickness: 50 μm
- Time resolution: 30-50 ps

 $\sigma_T \leq 30$ ps for Pre RAD (i.e., EIC-like)

Endcap Timing Layer (ETL)

Challenging ASICs, clock distribution, mechanics, and integration

Radiation-hard (~ 2x10¹⁵ n_{eq}/cm²), magnetic field tolerant (4 T), high DAQ rate (~ MHz) Prototyping stage: 2020-2022 Total project cost: ~ \$10M

<u>Radiation environment: HL-LHC vs. EIC</u>

HL-LHC

- No radiation-hard issue for EIC good for the entire lifetime
- Optimizing for best time resolution is highest priority!

A hermetic TOF system at EIC

- some genetic considerations

With the same technology, BTL more costly than ETL Consider a design case: $\eta_m = 1.5$; r = 1.4 m, L = 6 m (CMS-like)

Performance of a LGAD-TOF for EIC: Endcap

Coverage p up to 6-7 GeV/c for endcap (1.5<lnl<4)

- Thinner LGAD can further improve σ_T (not possible for CMS)
- Multi-layers (3-4) to improve σ_T and serve as tracker layers

Performance of a LGAD-TOF for EIC: Barrel

Coverage p up to ~ 4 GeV/c for barrel ($|\eta| < 1.5$)

Can more or less meet the requirement but likely more costly

Performance of a LGAD-TOF for EIC

EIC Detector Requirements

Electron-Ion Collider Detector Requirements and R&D Handbook

11

Baseline: leverage HL-LHC R&D as much as possible (e.g., same ASIC design save huge efforts and cost)

Test thinner 35 μ m LGAD \rightarrow 20 ps time resolution

 $\begin{array}{l} \mbox{AC-coupled LGAD R&D} \\ \rightarrow \mbox{ increase fill factor,} \\ \mbox{granularity, cost reduction} \end{array}$

INFN Torino

Collaboration with FNAL/Torino CMS groups and possibly eRD24 (?)

- Implement simulations for optimizing geometry, layout etc.
- Cost optimization (e.g., no need of rad-hard components?)

<u>Summary</u>

The case of a LGAD-based TOF for EIC

- Excellent time resolution (\leq 20-30 ps)
- High granularity (esp. AC-coupled): tracker layers + heavy flavor reco.
- Highly compact: ~ 2 cm/layer, flexible for system integration
- Very rad-hard: good for the entire EIC lifetime
- Sustain high readout rate
- Stable calibration: crucial for prompt reconstruction

Cost is well understood and lots of room for optimization as the technology becomes mature and by leveraging HL-LHC R&D

Workforce being established (CMS/ALICE HI groups, FNAL, Torino etc.) and hope to grow stronger collaboration

<u>Backups</u>

a) Traditional Silicon detector b) UFSD

$$\sigma_t^2 = \sigma_{\text{Jitter}}^2 + (\sigma_{\text{Total ionization}} + \sigma_{\text{Local ionization}})^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{TDC}}^2.$$

Performance of a LGAD-TOF for EIC

Electron ID up to p ~ 1.8-2 GeV/c

Study of heavy flavor hadronization with ep/eA collisions

18