
High Momentum PID at EIC

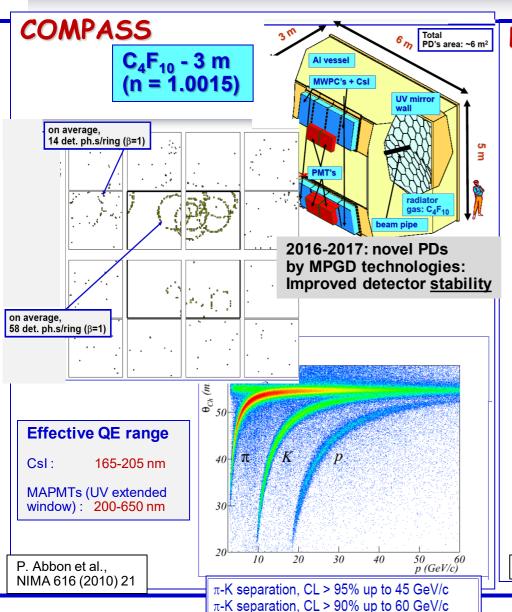
(in 10 years from now)

NOTE

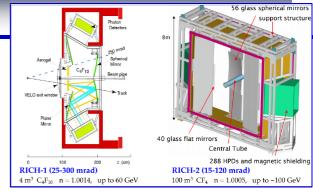
in these slides, the reference is to π/K separation at 3 σ

INTRODUCTION

High-p h-PID at colliders, WHICH CHALLENGES?

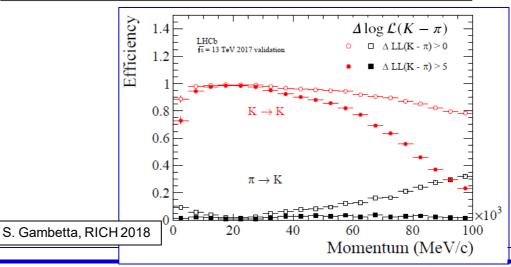

- What is needed & related challenges:
- Gaseous radiatorShort radiator length in spite of limited Ch. photon yield
 → the COMPACT RICH concept
- Focusing system (mirrors) Light support and substrate
- Wide phase space acceptance Extended systems complemented by low-p h-PID
- Detector in B-field region Photon detectors effectively operating in B-field
- <u>Limited number of active RICHES for high p h-PID world-wide</u>
 - COMPASS
 - LHCb (2-counter system)

Wide phase space acceptance


NA62

small phase space acceptance

LESSONS FROM HIGH P RICHES IN OPERATION



LHCb

NIMA, 766 (2014) 245

Radiator	N _{pe} from data		N _{pe} from simulation			
	Tagged $D^0 \rightarrow K^-\pi^+$	$pp \rightarrow pp\mu^+\mu^-$	Calculated N _{pe}	True N _{pe}		
Aerogel	5.0 ± 3.0	4.3 ± 0.9	8.0 ± 0.6	6.8 ± 0.3		
C_4F_{10}	20.4 ± 0.1	24.5 ± 0.3	28.3 ± 0.6	29.5 ± 0.5		
CF ₄	15.8 ± 0.1	17.6 ± 0.2	22.7 ± 0.6	23.3 ± 0.5		

Time resolution (σ)

- PMTs, MAPMTs >/~ 0.3 ns
- MCP-PMT <100 ps
- SiPM <100 ps</p>
- MWPCs >/~ 20 400 ns
 - FE dependent, ballistic deficit implications (*)
- MPGDs ~ 7-10 ns (INTRINSIC)
- (*) COMPASS Gassiplex 400 ns, ballistic def. 50% APV25 20ns, ballistic def. 25%

Operation in magnetic field

- PMTs, MAPMTs, HPMTs NO
- MCP-PMT YES
- MWPCs, MPGDs YES
- SiPM YES

Effective QE range

Vacuum-based devices:

λ > 300, 250, 200 nm [also solar-blind]

Gaseous devices (CsI):

 λ < 205 nm

COSTS

- Gaseous (*) \$ (0.2-0.4 M / m²)
- MAPMTs \$\$ (0.5-1 M / m²)
- SiPM \$\$ (0.8-1 M / m²)
- MCP-PMT \$\$\$ (???)
 - LAPPD \$\$ (0.8-1 M / m²)
- (*) gas system, mirrors more DEMANDING →

Options for h-PID at high p in classical collider setups

"STANDARD" APPROCH

- 1 m-long radiator and visible light PDs
- PDs: LAPPDs or SiPMs

```
• C_4F_{10} ( n = 1.0015, \theta_max: 55 mrad )
```

- π threshold : 2.5 GeV/c
- K threshold : 9.0 GeV/c
- n_det.ph.s (β =1) / 1m : ~ 20 30
- To exploit PID up to 50 GeV/c : σ_C_ph < 1.5 mrad
- CF_4 (n = 1.0005, θ_{max} : 32 mrad)
 - π threshold : 4.4 GeV/c
 - K threshold : 15.6 GeV/c
 - $n_{det.ph.s}(\beta=1) / 1m : \sim 10$
 - to exploit PID up to 50 GeV/c : σ_C_ph < 0.9 mrad</p>

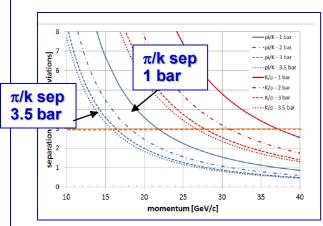
"HIGH PRESSURE" RICH

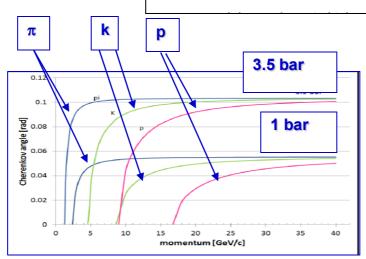
sapphire

window

50 cm deep

radiator gas


An option for ALICE HMPID upgrade (later abandoned)


A.G. Agócs et al. / Nuclear Instruments and Methods in Physics Research A 732 (2013) 361-365

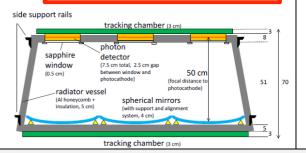
Goals:

- 1.5 mrad resolution
- p/K 3 σ sep. up to 25 GeV/c
- π/K sep. from 5 GeV/c
- π/K 3 σ sep. up to 16 GeV/c

Expected (simulations):

h-PID @ high p

Details:

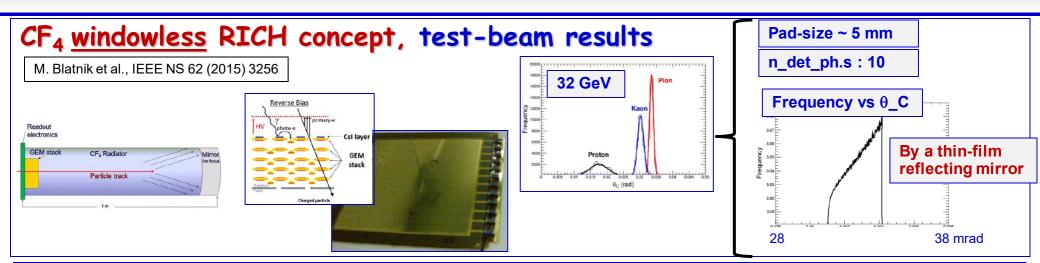

photon detector

Cherenkov

photons

spherical mirror

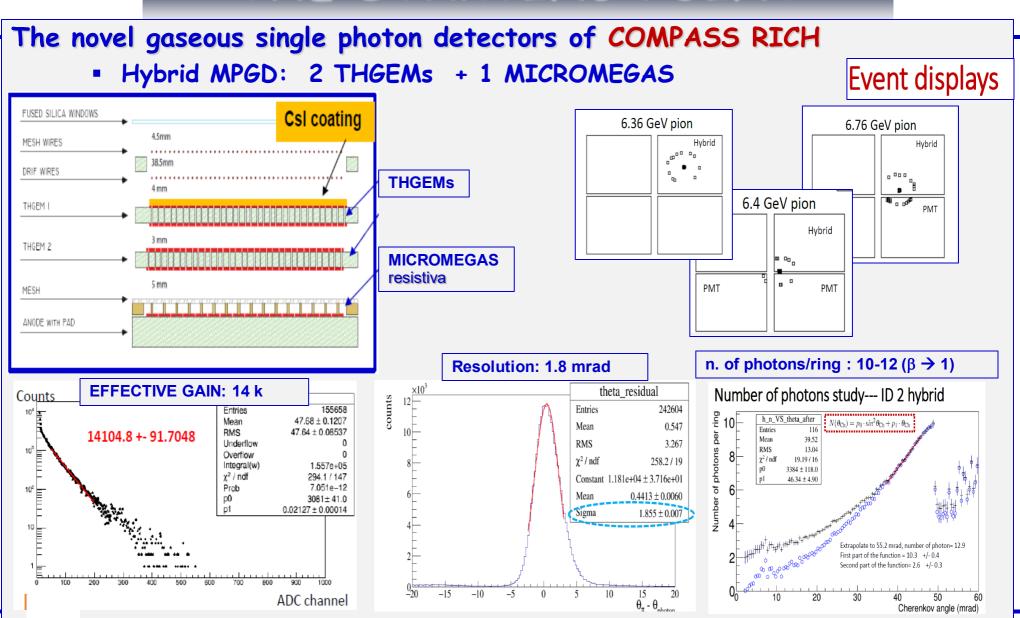
- **Focusing RICH**
- Radiator: $3.5 \text{ bar } C_4F_8O (50 \text{ cm})$
- Photon detector: CsI-MWPC (CH₄)
 - Sapphire Window:
- Mirrors: 3x3

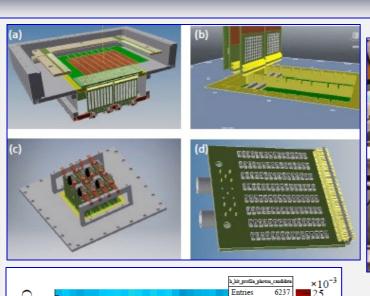

Test-beam:

n. of ph.s: 10 (saturation)

→ 20 ph.s per m

Reminder: at 1 bar with MWPCs +Csl: ~ 5 ph.s per m


"WINDOWLESS" RICH

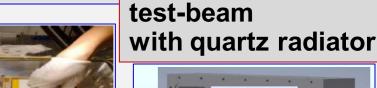

- 1 m-long radiator and gaseous PD
- Increased n. of detected photons with a wavelength range around 120 nm
 - 10 photons (as with visible PDs !)
- CF_4 (n = 1.0005, θ_{max} : 32 mrad)
 - π threshold : 4.4 GeV/c
 - K threshold : 15.6 GeV/c
 - n_det.ph.s (β=1) / 1m : ~ 12
 - Testbeam σ_{C_ph} : 1 mrad, where about $\frac{1}{4}$ from chromatic dispersion
 - to exploit PID up > 60 GeV/c : σ_C_ph < 0.7 mrad
- High-tech, expensive mirrors, gas transparency issues at 120 nm

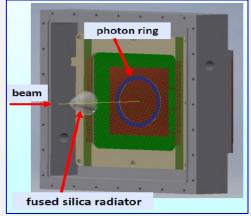
INFN ACTIVITY Within eRD6

THE STARTING POINT

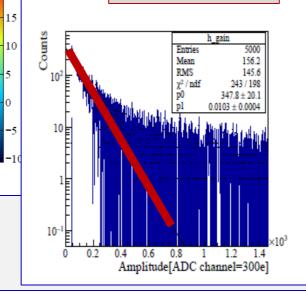
MOVING TOWARDS PAD-SIZE MINIATURIZATION

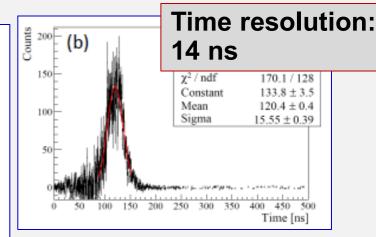
20


Std Dev x 7.179 Std Dev y 7.503

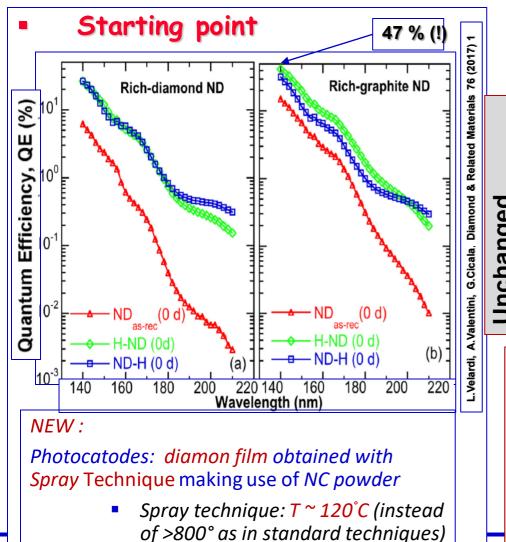

25

30


Pad X ID



Noise still too high: we are at work to improve


20

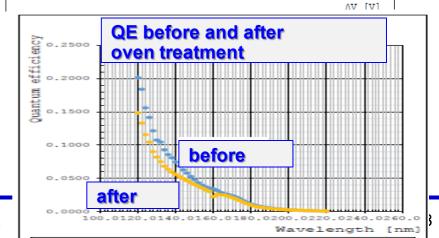
15

10

NOVEL, ROBUST PHOTOCATHODES

HYDROGENATED NANO-DIAMOND powder

Ce


explorative

set

coating check at various sod QE

1st YR meeting, 19-21 March 2020

USE OF FLUOROCARBONS In 10 year

THE NOVEL ISSUE

- The current model are based on the use of <u>fluorocarbons</u>
 - Offering large Cherenkov photon rate with limited chromatic dispersion
- These gasses are not eco-friendly
 - They attack O₃
 - They have high Global Warming Potential values (100 y)

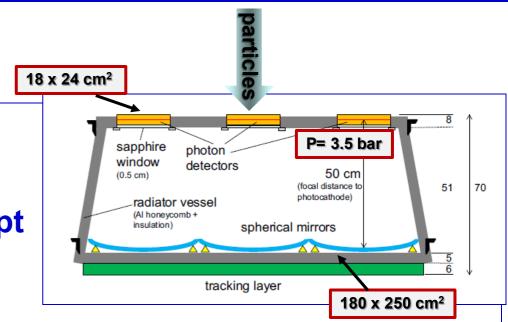
 \Box C₄F₁₀: 4800

□ CF₄ : 6500

□ CO₂: 1 (by definition)

□ CH₄: 86 (for comparison)

- Other gas options?
 - Not yet: The community starts only now addressing this aspect


ECO-FRIENDLY GASEOUS RICHES

2 very attractive ingredients in the ALICE VHPID concept

- P > 1 bar
 - A handle to overcome the limitations of existing gasses:

Take a "light gas" with limited chromaticity and make it "heavy"

- A tunable detector
- The overall design that results in isolated, small size PDs
 - Easier to build, easier to handle, easier to maintain
 - The PDs must be light

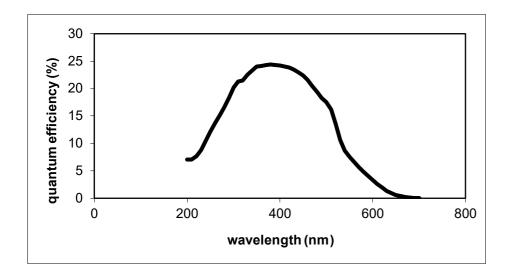
PRESSURIZED Ar vs FLUOROCARBONS

Chromatic dispersion

		VISIBL	E (bialk	ali with	ı ext. U	V glass v	vindow)		Cs	si & qua	artz wir	dow		1	CsI ~ 12	0 nm (windov	vless RIC	CH)
						σ_θ / 🛕						σ_θ /						σ_θ /	
			σ			θ _max	n_ph/		σ			θ _max	n_ph/		σ			θ _max	n_ph/
		(n-1)	(n-1)	θ _ma		(chrom	m	(n-1)	(n-1)	θ _ma		(chrom	m	(n-1)	(n-1)	θ _ma		(chrom	m
gas	Р	*10 ⁶	*10 ⁶		$\sigma_{-}\theta$. only)	$(\beta = 1)$	*10 ⁶	*10 ⁶	X	σ_{θ}	. only)	$(\beta = 1)$	*10 ⁶	*10 ⁶		σ_θ	. only)	$(\beta = 1)$
	(bar)			(mbar)	(mbar	(%)				(mbar)	(mbar)	(%)				(mbar)	(mbar)	(%)	
CF ₄	1	497	11.5	31.5	0.4	1.2	10.0	545	7	33.0	0.2	0.6	2.5			33.2	0.83	2.5	12.2
C_4F_{10}	1	1367	46	52.3	0.9	1.7	27.5	1564	30.5	55.9	0.5	1.0	7.2						
Ar	1	294	10	24.2	0.4	1.7	5.9	340	7.5	26.1	0.3	1.1	1.6						
Ar	1.5	441	15	29.7	0.5	1.7	8.9	510	11	31.9	0.3	1.1	2.3						
Ar	2	588	19.5	34.3	0.6	1.7	11.8	580	14.5	34.1	0.4	1.2	2.7						
Ar	3	882	29.5	42.0	0.7	1.7	17.7	1020	22	45.1	0.5	1.1	4.7						
Ar	3.5	1029	34.5	45.3	0.8	1.7	20.7	1190	25.5	48.8	0.5	1.1	5.5						→

Number of detected photons at β = 1 (scaling from yellow box)

PRESSURIZED Ar vs FLUOROCARBONS

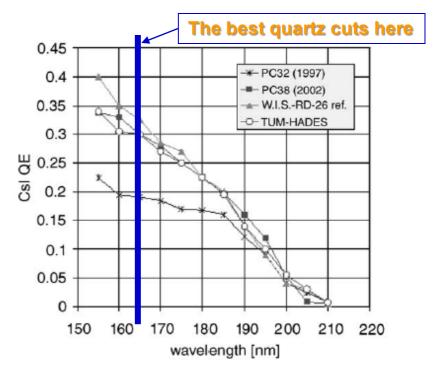
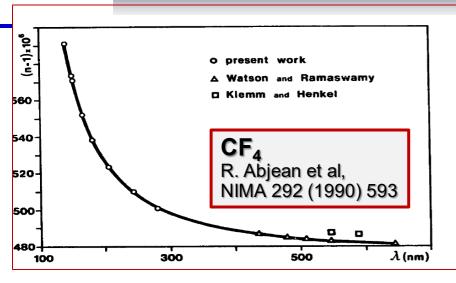
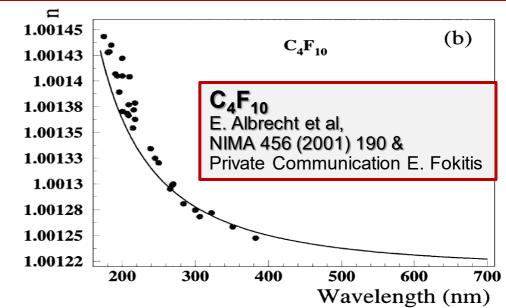

		VISIBL	E (bialk	ali with	ı ext. U	V glass v	vindow)		Cs	si & qua	artz wii	ndow			CsI ~ 12	0 nm (windov	vless RIC	CH)
						σ_θ/						σθ/						σ_θ/	
			σ			θ_max	n_ph/		σ			S _m	n_ph/		σ			θ_max	n_ph/
		(n-1)	(n-1)	θ_{ma}		(chrom	m	(n-1)	(n-1)	θ _ma	200	(ch m	m	(n-1)	(n-1)	θ _ma		(chrom	m
gas	Р	*10 ⁶	*10 ⁶	X	$\sigma_{oldsymbol{-}}\theta$. only)	$(\beta = 1)$	*10 ⁶	*10 ⁶	x /	\&\ &\	.(ly)	$(\beta = 1)$	*10 ⁶	*10 ⁶		σ_θ	. only)	$(\beta = 1)$
	(bar)			(mbar)	(mbar	(%)				(mb	Suoto oa	%)				(mbar)	(mbar)		
										18									
CF ₄	1	497	11.5	31.5	0.4	1.2	10.0	545	7	3/	.2	0.6	2.5			33.2	0.83	2.5	12.2
C_4F_{10}	1	1367	46	52.3	0.9	1.7	27.5	1564	30	46 00 5.9	0.5	1.0	7.2						
									/30										
Ar	1	294	10	24.2	0.4	1.7	5.9	340	*	.1	0.3	1.1	1.6						
Ar	1.5	441	15	29.7	0.5	1.7	8.9	510	11	1.9	0.3	1.1	2.3						
Ar	2	588	19.5	34.3	0.6	1.7	11.8	580	14	34.1	0.4	1.2	2.7						
Ar	3	882	29.5	42.0	0.7	1.7	17.7	1020		45.1	0.5	1.1	4.7						
Ar	3.5	1029	34.5	45.3	0.8	1.7	20.7	1190	5.5	48.8	0.5	1.1	5.5						

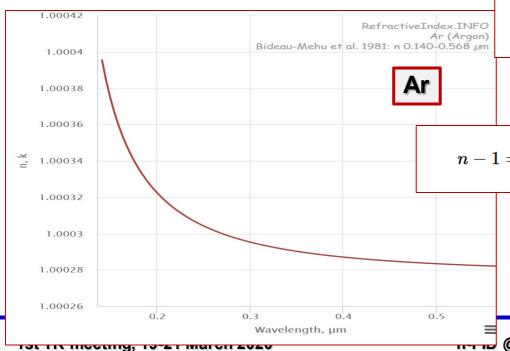
Promising: enough photons and Chromatic effect as for C_4F_{10}

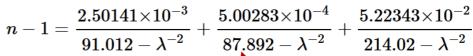
The promising testbeam results with CF₄ suggest exploration here If successful → minimum material budget

SOME INPUTS USED 1/3

QE – Hamamatsu, MAPMT with UV extended window


Fig. 1. The QE of CsI PCs produced at CERN for ALICE and at TUM for HADES, compared to that measured at the W.I.S. on small samples (reference for RD-26). PC32 is one of the four PCs equipping the ALICE-RICH prototype used in STAR at BNL. A. Di Mauro, NIM A 525 (2004) 173.


19

SOME INPUTS USED 2/3

These 2 poles are near 105 nm!

- MPGD at high P, very limited literature, nevertheless:
 - Studies for a triple GEM (for double phase cryogenic detectors: at boiling point Ar density is 2.8 x density at normal conditions)

For THGEMs, confirmed by the operation of the double phase **DUNE** prototype

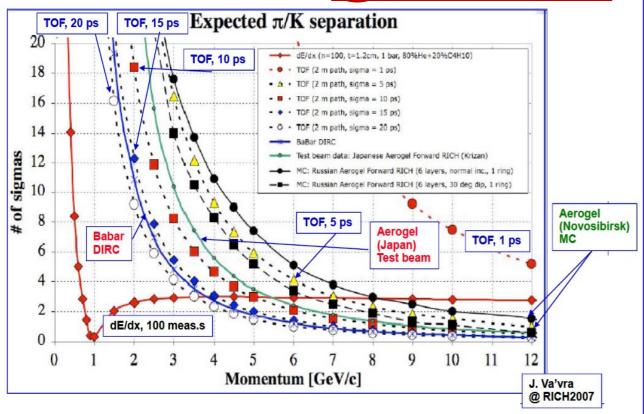
A. Bondar et al. | Nuclear Instruments and Methods in Physics Research A 481 (2002) 200–203

SUMMARY

OPTIONS for h-PID at high-p needed at EIC

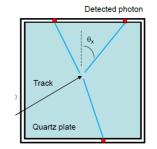
- STANDARD APPROACH (fluorocarbons + visible light PDs)
 - Photon detectors to be established
- WINDOWLESS RICH (CF₄ and MPGDs)
 - Initiated with a <u>successful test beam</u>
 - PD developments within eRD6
- Ar RADIATOR @ HIGH P(visible light PDs or windowless)
 - Eco-friendly (possible future constrains)
 - Studies have to start

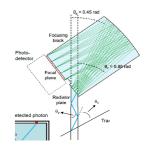
Thank you!


MORE INFORMATION

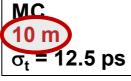
Dedicated R&D

ARE THERE NO-RICH OPTIONS?

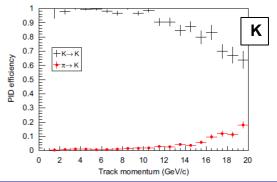

ever arm assumed



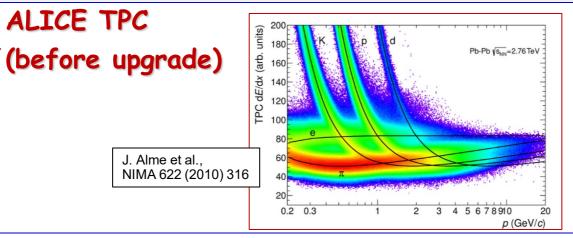
TORCH: a DIRC for TOF

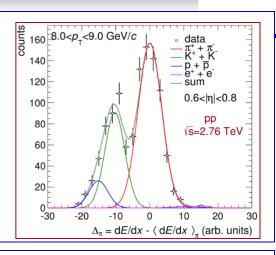

Overcoming:

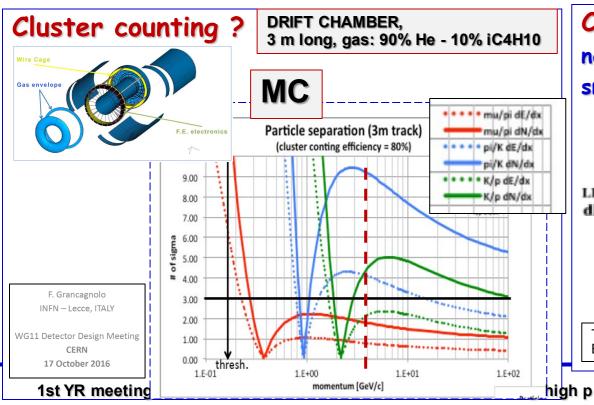
- the upper limit from $\theta_{\rm C}$ saturation
- the time-resolution limit from single photon

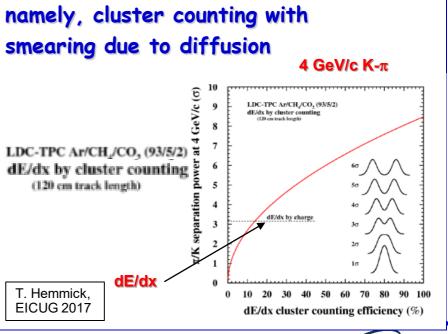


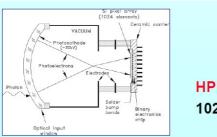
1/2




M.J.Charles, R. Forty, NIMA 639 (2011) 173

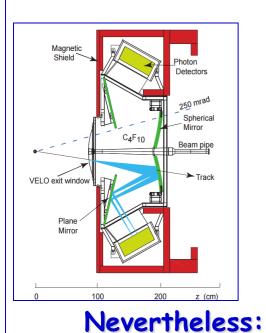


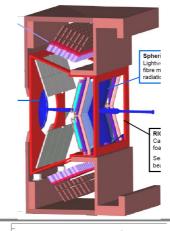

ARE THERE NO-RICH OPTIONS? 2/2

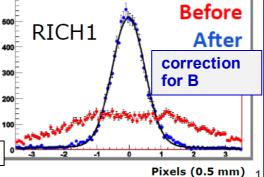


Cluster counting in a TPC?

Addressing the photon detector issues

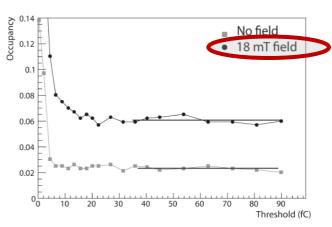

PMTs & MAGNETIC FIELD


LHCb



HPM, LHCb custom 1024 anods

Impressive mag. shielding



COMPASS

P. Abbon et al., NIMA 616 (2010) 21

MAPMT type R7600-03-M16 by Hamamatsu

Individual soft iron shielding → B < 2 mT (external B ~ 20 mT)

A. Papanestic, RICH 2013

ABOUT SINGLE PHOTON DETECTORS

3 families (grouping by technologies)

Vacuum based PDs

- PMTS (SELEX, Hermes, BaBar DIRC, NA62)
- MAPMTs (HeraB, COMPASS RICH-1 forward region, LHCb upgrade, GlueX, CLASS12, Panda forward-RICH)
- Hybride PMTs (LHCb)
- HAPD (BELLE II aerogel-RICH)
- MCP-PMT (BELLE II barrel: TOP detector)
- LAPPDs large size MCP-PMTs, development ongoing

Gaseous PDs

- Organic vapours in practice only TMAE and TEA (Delphi, OMEGA, SLD CRID, CLEO III, ...)
- Csl and open geometry (HADES, COMPASS, ALICE, STAR, JLAB-HALL A)
- Csl and MPGDs (PHENIX HBD, no imaging, NEW: COMPASS RICH-1 2016-17 upgrade)

SiPMs

- Silicon PMs (not used so far in any experiment)
 - radiation hardness, intrinsic noise
 - cooling to moderate them → more material, complexity

Silvia DALLA TORRE

Time resolution (σ)

- PMTs, MAPMTs >/~ 0.3 ns
- MCP-PMT <100 ps
- SiPM <100 ps
- MWPCs >/~ 20 400 ns
 - FE dependent, ballistic deficit implications (*)
- MPGDs ~ 7-10 ns (INTRINSIC)
- (*) COMPASS Gassiplex 400 ns, ballistic def. 50% APV25 20ns, ballistic def. 25%

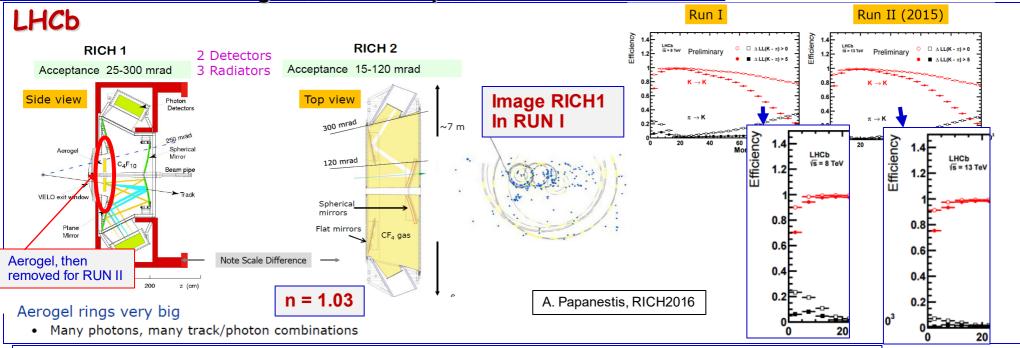
Operation in magnetic field

- PMTs, MAPMTs, HPMTs NO
- MCP-PMT YES
- MWPCs, MPGDs YES
- SiPM YES

Effective QE range

Vacuum-based devices:

λ > 300, 250, 200 nm [also solar-blind]


Gaseous devices (CsI):
 λ < 205 nm

COSTS

- Gaseous (*) \$ (0.2-0.4 M / m²)
- MAPMTs \$\$ (0.5-1 M / m²)
- SiPM \$\$ (0.8-1 M / m²)
- MCP-PMT \$\$\$ (???)
 - LAPPD \$\$ (0.8-1 M / m²)
- (*) gas system, mirrors more DEMANDING →

Any source of noise compromises PID efficiency and purity

Here shown making use of LHCb experience

Intrinsic noise rate, hits per m² in a time window of 10 ns

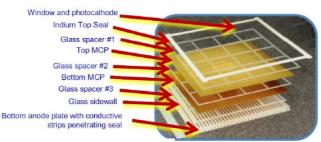
- MAPMTs (cut to reject cross talk with only 5% photoelectron loss)
 - ~0.1 (information source: COMPASS)
- Gaseous (cut at 3 σ noise) : < 20 (information source: COMPASS)
- SiPM (S13361-3050-08, room temperature, no ageing): 500 (information source:

Hamamatsu data sheet)

MAPMT : Gaseous : SiPM = 1 : 200 : 5000

MCCPs by Hamamatsu,

Pixel size: 3 x 3 mm²


70% active area.

MINOT, Pisa Meeting 2018 B.W. Adams et al., arXiv:1603.01843

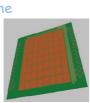
LAPPD, an OPTION?

LAPPD

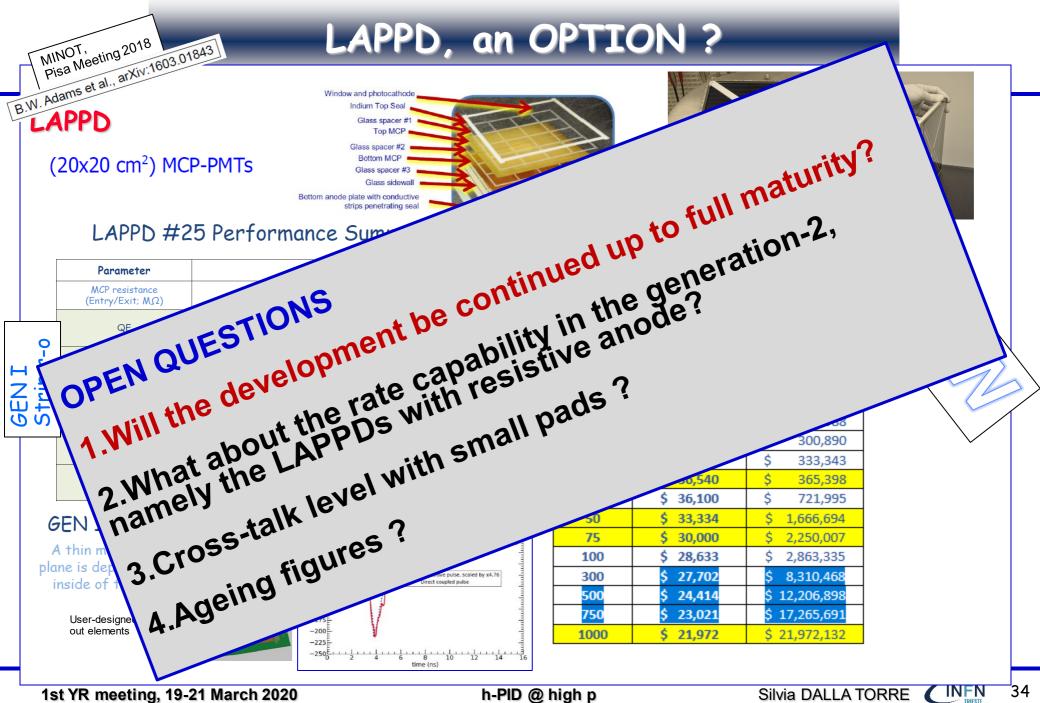
(20x20 cm²) MCP-PMTs

LAPPD #25 Performance Summary

Parameter	LAPPD 25
MCP resistance (Entry/Exit; MΩ)	10.7 / 14.2 MΩ at 875 V
QE	@365 nm: Max: 10%, Mean: 7.1%, s = 0.8%
~-	@455 nm: Mean: 10.2%
Gain	7.5 x10 ⁶ @ 850/950 V (entry/exit)
N-ul-u-t-	9.5 Cts/s cm2
Dark rate (Single 13.5 cm2 strip)	@ 50 volts on the P/C, 850 V/MCP, and Threshold of 7.6x105 gain
After pulses	Typical for MCP PMT - about 3.5%
Along-strip	2.8 mm RMS (measured as 33.4 psec)
<u>Spatial Resolution</u> Cross-strip	1.3 mm RMS
Time Resolution	64 psec resolution TTS MCP Pulse Rise time: 850 psec, FWHM: 1.1 nsec


Table 1 - LAPPD Pricing Schedule (05-18-2019)

# Sold	Unit Price	Sales
1	\$ 50,000	\$ 50,000
2	\$ 47,044	\$ 94,088
3	\$ 43,440	\$ 130,319
4	\$ 41,461	\$ 165,842
5	\$ 40,111	\$ 200,557
6	\$ 39,095	\$ 234,571
7	\$ 38,284	\$ 267,988
8	\$ 37,611	\$ 300,890
9	\$ 37,038	\$ 333,343
10	\$ 36,540	\$ 365,398
20	\$ 36,100	\$ 721,995
50	\$ 33,334	\$ 1,666,694
75	\$ 30,000	\$ 2,250,007
100	\$ 28,633	\$ 2,863,335
300	\$ 27,702	\$ 8,310,468
500	\$ 24,414	\$ 12,206,898
750	\$ 23,021	\$ 17,265,691
1000	\$ 21,972	\$ 21,972,132


GEN II Capacitive Coupling

A thin metal DC ground plane is deposited onto the inside of the detector.

> User-designed readout elements

25	Marine Land Confirm And Confirm
-25	
-50 -75	Capacitive pulse, scaled by x4.76
≧-100	Direct coupled pulse
-125 -150	\ j
-175 <u>E</u>	V
-200 -225	V
-250E	4 6 8 10 12 14

h-PID at HIGH p -> RICH with GASEOUS RADIATOR

Cherenkov imaging detectors

- Gaseous RICH with focalization
- Proximity focusing RICH
- DIRC & DIRC derived schemes

- p up to 50-100-300 GeV/c
- p up to 5-6 (8?) GeV/c
- p up to 5-6 GeV/c

TOF

Classical (example: 4 m, 30 ps)

- p up to 4-5 GeV/c
- TORCH (DIRC-like TOF, 10 m 12.5 ps)
- p up to ~15 GeV/c

dE/dx

- Traditional (example: ALICE TPC)
- p up to 5-6 GeV/c
- Cluster counting (example: MC for

the CeeC IDEA concept, to be confirmed) p up to >100 GeV/c