

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Nuclear shadowing in DIS for future electron-ion colliders

Michal Krelina

FNSPE, Czech Technical University in Prague, Czech Republic

Based on <u>arXiv:2003.04156</u>

1st EIC Yellow Report Workshop at Temple University, 19-21 March 2020

Outline

- Nuclear shadowing in terms of color dipole formalism
- Results for F_2^A
- Preliminary results for centralities, F_L^A , $F_2^{(c)A}$, σ_L/σ_T
- What we can offer to **EIC**?
- Conclusions

Color Dipole Framework

- Reference frame: **rest frame** of the nucleus
- Virtual photon fluctuations:
 - Fock component expansion: $|q\bar{q}\rangle + |q\bar{q}G\rangle + |q\bar{q}2G\rangle + |q\bar{q}3G\rangle + \cdots$
 - For DIS at proton target **only the first** Fock component
- Cross section:

$$\sigma_{tot}^{\gamma^*N}(x_{Bj},Q^2) = \int d^2r \int_0^1 d\alpha \left| \Psi_{q\bar{q}}^{T,L}(\vec{r},\alpha,Q^2) \right|^2 \sigma_{q\bar{q}}(\vec{r},s)$$

See more: arXiv:2003.04156

$$\gamma^* \to q \overline{q}$$
 wave function:
 $\Psi_{q \overline{q}}^{T,L}(\vec{r}, \alpha, Q^2) = \frac{\sqrt{N_c \alpha_{em}}}{2\pi} Z_q \ \overline{\chi} \widehat{O}^{T,L} \chi K_0(\epsilon r)$

• *Improvement:* non-perturbative interaction $q - \overline{q}$

See more: Phys. Rev. D62, 054022 (2000)

Nuclear shadowing

- Nuclear shadowing: shadowing of hadronic components of virtual photon caused by their multiple scattering inside the target
- Coherence length (CL)/time:
 - Controls the dynamics of nuclear shadowing
 - Photon fluctuation lifetime
 - For example: lowest Fock component $|q\bar{q}\rangle$

$$l_c = \frac{2\nu}{Q^2 + M_{q\overline{q}}^2}, \quad \nu = \frac{Q^2}{2m_N x_{Bj}}$$

• CL is related to the longitudinal momentum $q_c = 1/l_c$

Nuclear shadowing limits

- Eikonal approximation (LCL long coherence length)
 - $\sigma_{q\bar{q}} \rightarrow 2(1 e^{-\frac{1}{2}T_A(b)\sigma_{q\bar{q}}})$
 - This is valid for $l_c \gg R_A$
 - I.E.: for small x_{Bj}
- For all other l_c use the Green function technique

Green Function Formalism

- For equations, see arXiv:2003.04156
- In high energy limit, the Green function takes a eikonalized form

FIG. 1: A cartoon [5, 6, 10] for the first shadowing term $\Delta \sigma_{tot}(x_{Bj}, Q^2) = \Delta \sigma_{tot}(q\bar{q})$ in Eq. (2.1). The Green function $G_{q\bar{q}}(\vec{r_2}, z_2; \vec{r_1}, z_1)$ describes the propagation of the $q\bar{q}$ pair through the nucleus, which results from the summation over different paths of the $q\bar{q}$ pair.

Quark vs gluon shadowing

• Quark shadowing: from $|q\bar{q}\rangle$ Fock component

CTU

• Gluon shadowing: from $|q\bar{q}G\rangle + |q\bar{q}2G\rangle + |q\bar{q}3G\rangle + \cdots$ Fock components

FIG. 3: A cartoon [52] for the shadowing term $\Delta \sigma_{tot}(x_{Bj}, Q^2) = \Delta \sigma_{tot}(q\bar{q}G)$. The Green function $G_{GG}(\vec{r}_{2G}, z_2; \vec{r}_{1G}, z_1)$ describes the propagation of the $q\bar{q}G$ system through the nucleus as a propagation of the effective gluon-gluon (color octet-octet) dipole neglecting the small transverse size of the color-octet $G \equiv q\bar{q}$ fluctuation.

Gluon shadowing

- $\gamma^* \rightarrow q \overline{q} G$ wave function
 - $\gamma^* \rightarrow GG$ approximation, valid for higher Q^2
 - The full $\gamma^* \rightarrow q \overline{q} G$ wave function in progress
- Small $\sigma_{q\bar{q}}(\vec{r},s)$ approximation, i.e., $\sigma_{q\bar{q}} \sim Cr^2$
 - Various ways to get factor *C*

• $M_{q\bar{q}G}^2 = \frac{p_T^2}{\alpha_G(1-\alpha_G)} + \frac{M_{q\bar{q}}^2}{1-\alpha_G} \gg M_{q\bar{q}}^2$

- We discuss two of them denotes as C_0 and more realistic C_{eff}
- Green function considered only because

See more: Phys. Rev. C62, 035204 (2000)

• Implemented as $\sigma_{q\bar{q}}(\vec{r},s) \rightarrow R_G(b,x_{Bj},Q^2)\sigma_{q\bar{q}}(\vec{r},s)$

See more: Nucl. Phys. A696, 669 (2001)

BK equation note

- Balitsky-Kovchegov (BK) evolution equation
 - Summation of all Fock components with gluons is inherent
 - Usually, the interaction is treated in high energy limit, i.e., the eikonalized form is used
 - That is $l_c^{q\bar{q}}$, $l_c^{q\bar{q}G}$, ..., $l_c^{q\bar{q}nG} \gg R_A$
 - Leading to overestimated nuclear shadowing
 - This is not reliable at kinematics covered by EIC

Results: quark shadowing only

Results: quark shadowing only

CTU

CZECH TECHNIC

M. Krelina, 1st EIC Yellow Report Workshop

Results: Gluon shadowing standalone

СТU

CZECH TECHNICAL UNIVERSITY IN PRAGUE

CTU CECH TECHNICAL UNIVERSITY IN PRAGUE

Results: Full shadowing

Results: Full shadowing

Results: Data comparison

CTU

CZECH TECHNIC

Dipole Formalism allows more

- So far, we studied F_2^A only
- We can study more:
 - Centrality dependence
 - F_L^A , σ_L^A/σ_T^A
 - $F_2^{c,A}, F_I^{c,A}, \sigma_L^{c,A}/\sigma_T^{c,A}$
 - $F_2^{b,A}$, $F_L^{b,A}$, $\sigma_L^{b,A}/\sigma_T^{b,A}$
- Note, the following results are preliminary and for GBW dipole cross section parametrization only

CTU CZECH TECHNICAL UNIVERSITY IN PRACUE

Results: Centrality

CTU CZECH TECHNICAL UNIVERSITY IN PRACUE

Results: Centrality

M. Krelina, 1st EIC Yellow Report Workshop

Results: Various observables

CTU

ZECH TECHNIC

Results: Ratios

What we offer to EIC?

- For EIC collaboration, we offer help with development color dipole framework based MC event generators such as Sartre
 - Implementation of Green function formalism
 - Exclusive processes involving VM
 - Other related features...

- Gluon shadowing grids:
 - https://zenodo.org/record/3470138

Conclusions and outlooks

Improvements

- Non-perturbative effects in $q \overline{q}$ interaction
- Exact treatment of coherence length
- Green function technique
- Gluon shadowing
 - Green function formalism important
 - Studied uncertainties of applied approximations
- Main source of uncertainty: dipole cross section $\sigma_{q\bar{q}}(\vec{r},s)$
 - $\sigma_{q\bar{q}}(\vec{r},s)$ is fitted from DIS
 - Nuclear DIS can help to exclude some of them
- Color dipole formalism offers the nature calculations at nuclear targets

Thank you for your attention!

The work was supported from European Regional Development Fund-Project

"Center of Advanced Applied Science"

No. CZ.02.1.01/0.0/0.0/16-019/0000778.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

