Charm production in CCDIS at EIC

Jae D. Nam

Temple Univ.

Overview

- Motivation
 - The strange quark content of the proton is largely unknown and there exist measurements in disagreement (different kinematic regions).
 - An attempt was made at ZEUS/HERA in order to provide a complementary measurement to contribute to the investigation, but was statistically-limited.

• ZEUS/HERA

- The theory calculations suggest 10-20% variation in charm cross section in CCDIS depending on the assumptions behind strange content of the proton.
- The measurement was statistically-limited ($\delta_{syst} \sim 10\%$ can be brought down to 3%, $\delta_{stat} \sim 100\%$).
- EIC
 - This topic can be revisited since we expect much higher luminosity to be achieved in EIC (2~4 orders higher than HERA).

ZEUS

Previous measurements of $s(x, Q^2)$

- Suppressed $(s/d \sim 0.5)$
 - Neutrino experiments e.g. CCFR/NuTeV
 - For large- x_{Bj}
- Unsuppressed $(s/d \sim 1)$
 - W/Z measurement by ATLAS,
 - W + c measurement by CMS
 - For low-*x*
 - Disagreement btw. ATLAS and CMS in some kinematic region.
- *x*-dependent
 - HERMES
 - Suppressed strangeness at highx and unsuppressed in low-x regime.

Charged current DIS (CCDIS)

- Characteristics include...
 - Clear signature (v_e)
 - Flavor selective
 - Low production rate
- Kinematic quantities can only be reconstructed via JB method.

$$y_{JB} = \frac{\sum_{h} (E - p_Z)_h}{2E_{e,beam}}$$
$$Q_{JB}^2 = \frac{p_{T,h}^2}{1 - y_{JB}}$$
$$x_{JB} = \frac{Q_{JB}^2}{Sy_{IB}}$$

Limited resolution in high-y & low-Q²

Nam

Charm production in CCDIS

- Contributions from different subprocesses.
 - Process (i) sensitive to strangeness.
 - 1. $s \rightarrow c$: (i) and (iii)
 - 2. $d \rightarrow c$: (i) and (iii) via d
 - 3. $c \rightarrow s(d)$: (ii) and (iv)
- BGF contributions in lowx and high-η.
 - $s \rightarrow c$ process was not isolated at ZEUS.
 - \rightarrow model-dependent
 - ZM-VFNS: relative variation in $\sigma^{c,CC}$ with different $s(x, Q^2)$
 - FFN & GM-VFNS: comparison to data.

Strategy

- Charm cross section was estimated with a range of $s(x, Q^2)$ based on different assumptions on the proton strangeness.
- A projection on charm yield $N^{c,CC}$ in EIC can be made with information on
 - Beam energies
 - Vertex detection resolution

*another useful quantity:
$$\frac{r_{EIC}^{s \to c}}{r_{ZEUS}^{s \to c}} = s \to c$$
 charm ratios

3/19/20

Pseudo data

• Summary

- 4 pseudo data samples have been generated with DJANGOH 4.6.10 and Pythia 8.2.
- Main process: $2 \rightarrow 2$ via W.
- 2 × HERA and 2 × EIC samples with different Q^2 , y ranges
- Unpolarized (subject to change)

E_e/E_p (GeV)	\sqrt{s} (GeV)	$Q_{min}^2(GeV^2)$	y_{max}	
27.5 / 920	318	200	1.0	HERA CCDIS measurement
27.5 / 920	318	200	0.9	HERA Charm in CCDIS
18 / 275	141	200	0.9	Direct comparison to HERA
18 / 275	141	0	0.9	Extended Q^2 range

• These samples have not been smeared nor G4-simulated.

CCDIS

• CCDIS cross section

 $\sigma^{\rm CC}(P_e=+0.30\pm0.01)=47.1\pm1.1({\rm stat.})\pm2.2({\rm syst.})$ pb,

 $\sigma^{\rm CC}(P_e = -0.27 \pm 0.01) = 83.1 \pm 1.2 {\rm (stat.)} \pm 3.3 {\rm (syst.)}$ pb.

• Unpolarized cross section expected to be:

$$\sigma^{CC}(P_e = 0) \sim 66 \pm 4 \, pb$$

• DJANGOH & Pythia w/ HERA kinematics

$$\sigma_{DJANGOH}^{CC} = 57.6 \ pb$$

$$\sigma_{Pythia}^{CC} = 63.6 \ pb$$

E_e/E_p (GeV)	\sqrt{s} (GeV)	$Q_{min}^2(GeV^2)$	y_{max}	$\sigma_{DJANGOH}^{CC} / \sigma_{Pythia}^{CC} (pb)$	$\sigma^{CC}/\sigma^{CC}_{nominal}$ (DJ/Py)
27.5 / 920	318	200	1.0	57 / 64	
27.5 / 920	318	200	0.9	54 / 61	1.00 / 1.00
18 / 275	141	200	0.9	17 / 19	0.31 / 0.31
18 / 275	141	0	0.9	24 / 25	0.44 / 0.39

Event level quantities

- A good description of ZEUS by both DJANGOH & Pythia at the DIS level.
- Discrepancy in $p_{T,miss} \sim 20 \text{ GeV}$, overall y.
 - Possibly due to missing DIS selection cuts.

Event level quantities (EIC)

- Change in kinematic sensitivity
 - $< x > \sim 0.1 \rightarrow 0.2$, $x_{min} \sim 0.005 \rightarrow 0.05$
 - W/Z measurement by ATLAS evolves to $x \approx 0.02$
 - v-scattering experiment at CCFR integrates x around $x \approx 0.1$

Charmed event ratio • HERA ($Q^2 > 200 \ GeV$)

25% in the e^+p periods and 12% in the e^-p periods

	Contribution (%)					
e^-p	$200 < Q^2 < 1500 {\rm GeV^2}$			$1500 < Q^2 < 60000 {\rm GeV^2}$		
	$\bar{d} ightarrow \bar{c}$	$\bar{s} ightarrow \bar{c}$	$c \rightarrow s(d)$	$\bar{d} \to \bar{c}$	$\bar{s} ightarrow \bar{c}$	$c \rightarrow s(d)$
ARIADNE MC	3	37	60	2	29	69
FFN NLO ABMP16.3	4	51	45	5	49	46
FONLL-B NNPDF3.1	4	43	53	4	33	63

- Charmed event ratio $r_c \sim 12\%$ is expected from HERA and this is achieved by both event generators.
- The $s \rightarrow c$ process ratio, however, differs by a factor of ~2 between DJANGOH and Pythia.

• DJANGOH & Pythia

$HERA\left(Q^2 > 200 \ GeV^2\right)$	r _c	$d \rightarrow c$	$s \rightarrow c$	$c \rightarrow s(d)$
DJANGOH	13.7	2.8	50.4	46.8
Pythia	10.7	3.6	26.7	69.6
EIC $(Q^2 > 200 \ GeV^2)$	r _c	$d \rightarrow c$	$s \rightarrow c$	$c \rightarrow s(d)$
DJANGOH	7.2	2.6	51.0	46.4

• Nonetheless, the $s \rightarrow c$ ratio is constant going from HERA to EIC, and r_c goes down by half.

Lifetime-tagging Method

- - 2D decay length (L_{xy}) projected onto Jet axis. LF \rightarrow Prompt, Symmetric decay length distribution due to finite vertex detection resolution
 - Charm \rightarrow Weakly-decaying, Asymmetric distribution.
- LF contribution (background) suppressed by mirroring decay length distribution about $L_{xy} = 0$. ٠
- Tagging efficiency $\sim 2\%$

Projection

- Projection for EIC
 - Charm tagging efficiency ratio not included.
 - The relative variation in $\sigma^{c,CC}$ assumed to be identical.
 - Optimal binning for EIC needs to be studied.

Summary

- Charm in CCDIS cross section, thus δ_{stat} , for EIC can be extrapolated from ZEUS measurement by understanding:
 - CCDIS cross section at EIC kinematics 1
 - Charmed event fraction in CCDIS 2.
 - 3. Tagging efficiency
 - 4. (Luminosity)
 - Criteria 1, 2 and 4 suggest the tagging efficiency at EIC needs to be up to $1 \sim 10$ times better than ZEUS to be decisive on the subject.
- Remaining tasks
 - Jet & 2nd vertex reconstruction.
 - Choosing optimal kinematic bins.
- Suggestions
 - A general purpose pseudo-data for high- Q^2 CCDIS
 - Consensus on G4 simulation package (Fun4All / G4E)
 - Theory input for EIC kinematic range will be most welcome.

 - For EIC η_{jet} range (Up to η_{jet} < 4?).
 High Q² (> 200 GeV²?) & y (< 0.9?, optional)

- Event generation
 - DJANGOH 4.6.10
 - Interfaced in /afs/.../eic/
 - Beam energies (HERA)
 - $E_e = 27.5 GeV, E_p = 920 GeV$
 - $\sqrt{s} = 318 \ GeV$
 - Beam energies (EIC)
 - $E_e = 18 GeV, E_p = 275 GeV$
 - $\sqrt{s} = 141 \ GeV$
 - Sample info
 - 100,000 events each

$\sqrt{s} (GeV)$	$Q_{min}^2(GeV^2)$	Ymax
318 (HERA)	200	0.9
318 (HERA)	200	1.0
141 (EIC)	200	0.9
141 (EIC)	0	0.9

- Tree production and smearing at the parton level & thus kinematics is done by EIC-smear.
 - interfaced in: /afs/.../eic/
- A selection of detector configuration available. (may not be up to date)
 - BeAST, ePHENIX, eSTAR...
- At the end, tree contains:
 - Event kinematics
 - Particle info

- **Fun4All** comes with Geant4 based simulation.
 - Interfaced in: /afs/.../eic/
 - ePHENIX detector configuration available.
 - Seems highly capable.
 - StRoot-like environment
 - Does Jet reconstruction using anti- k_T algorithm. (k_T , ZEUS)
 - 2nd-vertex reconstruction.
 - Vertices reconstructed with a defined(?) resolution.
 - True (generated) & reconstructed quantities available.
 - Detector response studies (Not utilized here).