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Many baseline EIC detector designs involved various gaseous detectors

5o 4030 ” 30 40 o ; technologies for tracking in the central as well as end cap region
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Barrel Main Tracker

U Hermetic coverage, close to 41T acceptance
= pseudo-rapidity range up to +/-1)
= Large area detectors
U Low material budget on the level of 3-5% of X,/X for
the central tracker region
= Gaseous detectors

Q4 Tracking momentum resolution in few % range

End cap Trackers

U Coverage in the end cap
=> pseudo-rapidity range up to +/-1 to +/-3.5
= Large area detectors
U Low material budget specially for the electron endcap
= Gaseous detectors
U Tracking momentum resolution in few % range
= 50 um space point resolution desirable for high
P (> 50 GeV) in the hadron end cap

EIC Detectors Tracking requirements U .
EIC Detector Requirements
Tracking Electrons wK/p PID HCAL Muons
n Nomenclature
Resolution Allowed X/Xo Si-Vertex Resolution oe/E PID p-Range (GeV/c) | Separation Resolution oe/E
-6.9 —-5.8 low-Q? tagger 56/6 < 1.5%; 106 < Q2
<102 GeV?
45— -4.0 LpiA Detectors
-4.0 — -3.5
-3.56 — -3.0 294 WE
30— 25 Op/p ~ 0.1%xp+2.0%
28 =20 TBD <7 GeVic ~50%AE
2.0—-15 Op/p ~ 0.05%xp+1.0% )
7% MNE Tt suppression
1.5 —-1.0 up to
10— -05 1:104
05 -00 Central do(xy; - go(rlg;]
0(Z) ~ do ~
00 — 05 S Oulp ~ 0.05%xp+0.5% | ~5% or less | o, v’ <5GeV/c =30 TBD TBD
5 um
0.5—1.0
1.0—-15
<8 GeVic
1.5 —20 ulp ~ 0.05%xp+1.0% (10-12)%ME
2.0 —25 TBD ~50%ME
25 —3.0 <20 GeV/c
Op/p ~ 0.1%xp+2.0%
30-35 ’ <45 GeVic
3.5 — 4.0
4.0 — 45
Auxiliary _
Te Detectors
> 6.2 Proton Spectrometer Ointrinsic(11)/1tl < 1%;
Acceptance: 0.2 < pr <
1.2 GeV/c
http://eicug.org/web/sites/default/files/EIC_HANDBOOK v1.1.pdf
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Central Tracking: TPC with MPGD-based readout structure U :";'i:z:anIX

PROs

s Cost effective way to instrument large volume

¢+ High tracking efficiency in high backgrounds

% Minimize material (X0) including new ideas on endcap construction
% Works nice in large B-field (drift || B)

o~ —=- % Good VO detection and reconstruction
= < Good dE/dx for particle ID

Swong back

2.11m

79 d l Quad-GEM Gain Stage % Continues readout option (no gating grid) with MPGD as a gain stage -> high rate detector
modaultes
2(2), 12(4), 3(r) Operated @ low IBF ( but "needs" fast tracking detectors in front and behind (in R))

) )

% Good charge particle momentum reconstruction (But if Space Charge Distortions can be

. : e a minimized and "calibrated")
u (N =0.8 u

g /! J__ =095
| ot el < Alot of experiences in construction and utilization (ALICE TPCs ...)
L[] — ‘% . U.g;u;—zebv o U;5u2—255V 4
CONs

X/
L X4

Electron drift time = A lot of events overlap

X/
L X4

lons Back Flow =>Space Charge Distortions

>

pad plane
(not to scake)

% TPC Readout = Lots of materials (mechanical structures, electronics, cables, cooling) in

L)

00 05 10 15 20 25 30 Endcap
IBF (%)

X/
L X4

Needs Laser to calibrate & control some crucial parameters.
Minimization of ion back flow with quad-GEM (ALICE TPC)
See eRD6 talk in this session
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MEGII Drift Chamber

Central Tracking: Drift Chambers UNIVERSITY

Full stereo cylindrical DC with large stereo

) sate -
stereo angle + :‘ * E1 .x-- X sterec angle + angles (102+147 mrad)
P “hinging N\, 00 T stereo angle - Small square cells
. s e % et £ (5.8+7.8 mm at z=0, 6.7+9.0 at z=+L/2)
stereo angle - X X LA : . 2
. ‘ aessesseses  BUAM layer (~ 12 wires/cm?)
F!eld to §ense f!eld o ?ense Active length L 1932 mm
wiresratio3:1 wires ratio 5: 1
N. of layers 9
The wire net created by the combination of + and — orientation
N ) X N. of stereo sectors 12
generates a more uniform equipotential plane
N. of cells per layer 192
sense wires: 20 pm diameter W(Au) => 1728 wires N. of cells per sector 16
field wires: 40 pm diameter Al(Ag) => 7680 wires Cell size (at z=0) 58+7.8 | mm
f. and g. wires: 50 pm diameter Al(Ag) => 2496 wires Twist angle +60°
11904 wires in total Stereo angle 102 + 147 | mrad
Stereo drop 35.7+514 | mm

High wire densities, anyway, require complex and time consuming assembly procedures and
need novel approaches to a feed-through-less wiring

Giovanni Francesco TASSIELLI, INSTR20, Feb 24, 3030 Novosibirsk

PROs

« Cost effective way to instrument large volume

« Good 1D spatial resolution in the radial-to-wire direction (~150 um)

« Small overall material budget (X0)

« Good dE/dx for particle ID capability

% Good charge particle momentum reconstruction capabilities

« Experiences in construction and utilization (MEGII Drift Chambers)

CONs

% Poor spatial resolution along the wire direction

¢ Issue with mechanical stabilities of the wires and impact on the operation of
the detectors

% Large material budget in the End Cap region

1st EIC Yellow Report Workshop @ Temple U. 03/19/2020
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Central Tracking: Straw Tubes UR};%ESNHIX

PROs

« Cost effective way to instrument large volume

« Good 1D spatial resolution in the radial-to-wire direction (~150 um)

+« Small overall material budget (X0)

« Good dE/dx for particle ID capability in high pressure operation mode

« U-V straw tubes layers configuration improve resolution in beam direction and /or mitigate
the left and right ambiguity

« Good charge particle momentum reconstruction capabilities

« Experiences in construction and utilization (PANDA @ FAIR, or GLUeX@ JLab)

CONs

« Left and wire ambiguity issues

« Poor spatial resolution along the wire direction (~ 1cm)

« Need for U-V layers configuration limitation on the geometric acceptance of the detector

(so lower geometric efficiency)

See talk on Drift Chambers and Straw Tube in this session
F. Grancagnolo
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Central Tracking: Cylindrical MPGDs (URWELL, Micromegas) U ?é%z:%rﬂy

PROs

% Cost effective way to instrument large volume

¢+ High tracking efficiency in high backgrounds and High rate capabilities
s Typical 2D space point resolution 100 um achievable

s Works nice even in large B-field

% No issues with lon Back Flow

% Good charge particle momentum reconstruction possible in uUTPC (or mini-drift) operation mode

% Minimization of the material budget in the End Cap region

Cyl. Micromegas — MVT CLAS12 (Hall B, JLab) % ldeal as fast signal tracking layer the Si + TPC central tracking option
: . 1

P < Experiences in construction and operation with CLAS12 Micromegas vertex Tracker

CONs

% Require several layers (6 layers) to achieve the required momentum resolution
« Overall material budget will be higher than other options
«» Construction on large volume (2 m diameter) is challenging

¢ Not obvious to have good dE/dx capability

M. Vandenbroucke, MPGD2015
Trieste, Italy

See talk on Cylindrical Micromegas in this session
F. Bossu
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GEM: Gas Electron Multipliers . Micromegas: URWELL:
,m,mt,am Micro Mesh Gaseous Structure Resistive micro-WELL Detector
¥ Drift Cathode

Drift/cathode

HV1
Well pitch: 140 pm
Well diameter: 70-50 pm
Kapton thickness: 50 pm
Drift gap Cu top layer (Spm)

40 kVicm
‘\

-
= = ~Micromesh= == == == =p[= == = —_— HVY2
Ampiification l L
E

-
[=]
(=]

Anode plane dap
] J

| ) DLC layer (0.1-0.2 pm) PCB readout
Particle R 50 -100 M</o electrode

LB U D (LR CEL SR L e 2L Giomataris, Nucl. Instr. and Meth. A419 (1598) 239 G. Bencivenni et al,, 2015 JINST 10 P02008

eRD6: Large & Low Mass End Cap GEM prototype

End Cap Tracking: MPGDs (GEMSs,

e

LRWELL, Micromegas) U%%%ESHY

IRGINIA

% Several MPGD technologies are mature enough

PROs

% Cost effective for large area coverage in the end cap region

% Excellent space point resolution (~ 50 to 100 pum)

% High rate capability (MHz /cm?)

% Good timing performances (15 ns) fast signal detector

% Minimize material (X/X0 ~ 0.4%)

% Robustness of the technologies (spark free detector with resistive layer
technologies)

s MPGD-based TRD to provide tracking and e/tr PID in End Cap region
%+ Vast experiences in construction and utilization (LHC detector upgrade,
JLab, BNL experiments ..) But Some R&D still needed for Resistive

MPGDs technologies (URWELL, Micromegas)
CONs
% Not so much really for EIC End Cap Trackers
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End Cap Tracking: Small-Strip Thin Gap Chambers (sTGCs) UNIVERSITY

'Vacmpm:h /

PROs

« Cost effective for large area coverage in the end cap region

« Good space point resolution (~ 100 pum)

% High rate capability (100kHz /cm?)

« Good timing performances (15 ns)

« Experiences in construction and utilization (ATLAS small Wheel Detector and STAR
Forward Tracker.)

CONs

% Material budget higher than MPGDs

% Spatial resolution not as good as MPGDs

P . - = : T

Denis Pudhza, INSTR20, Feb 25, 3030 Novosibirsk
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Summary UNIVERSITY

* Many baseline EIC detector designs involved various gaseous detectors technologies

T 05 for tracking in the central as well as end cap region
1 + Afew technologies are mature for EIC Detectors and would require only limited R&D
e S ":O % Some of these technologies seems more natural options for some subdetectors
E :
», @E:ma,d 3040 50 s There is still a need for small level of R&D to fully satisfy the EIC requirements
+ The anticipated simulation work within Tracking WG will help select the best
technologies for EIC
BeAST @ eRHIC
JLEIC Design ePHENIX @ eRHIC

Meeting ANL 2016
| Alexander Kiselev.

Flux-return Flux-
Flux retum yoke
{(muon chambers?)

EIC User Group
Meeting ANL 2016

solenoid coll (1.5-3T)

EMcal (Sci-Fl)

with field
exclusion
for e-beam

Space for additional

(top view)

2
. 2 1 barre! ;:mmd“p _ Isilicon trackers “ TPC ” GEMs |-| 3T solenoid

1st EIC Yellow Report Workshop @ Temple U. 03/19/2020 10



