Cylindrical Micromegas Tracker and more...

F.Bossù for DPhN and DEDIP

EIC YR meeting - Tracking WG 19 March 2020

cea MPGDs in an EIC Detector

- Two options
- External/Internal layers to a TPC to help track matching with calorimetry and particle identification detectors
- Must fit in very narrow space
- Good spatial resolution
- Possibly, good timing resolution

- Full tracker, i.e. several concentric layers of MPGDs
- Layers can be cylindrical for a compact designs
- Must work in high particle rates and high magnetic fields

- For both solutions, low X/X0 is mandatory
- The technology must be affordable and reliable for large surfaces

Experience with a cylindrical MM trackers

CLAS12 Experiment at Jefferson lab
Study of the nucleon structure with $\sim 11 \mathrm{GeV}$ electron beam at high luminosity $\left(10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$

Targets: liquid hydrogen, liquid deuterium and other nuclei

Micromegas Vertex Tracker (MVT) :

- Inserted in the 5T solenoid
- Used in combination with the Silicon Vertex Tracker (SVT)
- $4 \mathrm{~m}^{2}$ of curved Micromegas detectors
- DREAM based Front-End Electronics ~ 20k ch.
- Low momentum particles => Light Detectors $\sim 0.3 \%$ of $\mathrm{X0}$
- Limited space of $\sim 10 \mathrm{~cm}$ for 6 layers (small radius $\sim 12 \mathrm{~cm}$)
- High magnetic field (5T)
- 6 Layers with different R (18 detectors total)
- Up to 30 MHz of particle rate

cea DREAM Front-End Electronics

Versatile FE readout electronics developed at Saclay primarily for CLAS12, and widely used by various experiments

Sustains trigger rates of 50 kHz and beyond; Low dead time operation with concurrent sampling and readout

Off-detector architecture with up to $\sim 2 \mathrm{~m}$ micro-coaxial cables and tolerant to 1.5 T magnetic field Based on an in-house developed 64-channel Dream ASIC High input capacitance friendly: $\mathrm{O}(100 \mathrm{pF})$ level
Sampling frequency up to 50 MHz
Adjustable peaking time from 70 ns to $1 \mu \mathrm{~s}$
Adjustable gain/dynamic range from 50 fC to 600 f

Cea Large planar detectors

ATLAS NEW SMALL WHEEL

- Total of 1200 m 2 of resistive Micromegas
- $2.3 \times 2 \mathrm{~m}$ no dead area detectors $\sim 16 \mathrm{~m} 2$ of active area of detector
- 60um resolution, 100um mechanical precision
- Max rate $15 \mathrm{kHz} / \mathrm{cm}^{2}$
- Resistive technology, high-rate oriented, will be part of the trigger system
- Saclay main contributor
- Large dedicated clean room for assembling and testing

$>$ A particle produces Cerenkov light.
$>$ Photons produce electrons in the photocathode.
> Electrons are amplified by a two stage Micromegas detector.
> Two signal components:
- Fast: electron peak (~1 ns). -> Timing features.
- Slow: ion tail (~100 ns).

Small drift gap (200 nm):
$>$ Pre-amplification possible
$>$ Limited direct ionization
> Reduced diffusion impact
Cerenkov radiator:
> Photoelectrons emitted simultaneously by the photocathode (fixed distance from the mesh)

Aiming at:

- single photoelectron time jitter ~100 ps
- produce sufficient photoelectrons to reach timing response $\sim 40 \mathrm{ps}$.
https://doi.org/10.1088\%2F1742-6596\%2F1312\%2F1\%2F012012

Cea MPGD WORKSHOP AT SACLAY

$120 \mathrm{~m}^{2}$ of clean room for Micromegas bulk and resistive layer manufacturing.
Bulk process: addition of a mesh on PCB by photolithography

- Maximum detector size: $600 \times 700 \mathrm{~mm}^{2}$.
- Amplification gap from 50 to $292 \mu \mathrm{~m}$
- Mesh woven (18 $\mu \mathrm{m}$ wires) or thin mesh (down to $5 \mu \mathrm{~m}$)
- PCB with strip, XY strip, pixel,...
- Production : ~ 150 bulk in 2019
- R\&D : thins mesh, curved bulk, segmented mesh, double mesh....

Double face micromegas
Resistive screen printing on various surface

- Maximum size: $600 \times 600 \mathrm{~mm}^{2}$
- Resistive value: from $10 \mathrm{KOhm} / \mathrm{sq}$, to 10 Gohm/sq

- Possibility of neutral on conductive paste
- Substrate: Kapton, glass, FR4
- Production: ~ 100 resistive substrate in 2019
- R\&D : mixture for ad hoc resistive value, segmented resistive,... contact stephan.aune@cea.fr

Resist strip of $500 \mu \mathrm{~m}$

Cea 2D READOUT AND LOW-IBF

ZigZag 2D read out

- R\&D on laser etching for read out of MPGD detector
- 1D ZigZag: better then 100um res with 2 mm strips
- MM, GEM and uRWELL read by the DREAM electronics
- 2D read-out with better than 200um resolution
- Development within an LDRD
- M. Revolle’s PhD subject

Low-IBF for TPC

- Micromegas based solutions for
- low-IBF read-out planes for TPC
- A. Glaenzer's PhD subject

HV power supply
ammeter

Summary

- Micromegas are a mature technology that can be an affordable, low material budget solution for large area detectors
- For compact detector designs, the central region can be equipped with cylindrical Micromegas tiles
- Ongoing R\&D efforts aims at improving the patterns for better spatial resolution both in 1D and 2D read-out configurations
- Coupling a few mm Cerenkov radiator with Micromegas (PICOSEC) might be a solution also for fast timing tracking detectors
- CEA-Saclay new workshop allows for fast prototyping and production
- FEE ASIC design in parallel with detector prototyping (see backups for other examples of ASIC developments)

Backups

AGET front-end chip

