End Cap Tracking with small-Strip Thin Gap Chambers (sTGC)

Daniel Brandenburg

(Shandong University / BNL-CFNS)

EIC Yellow Report Workshop Temple University 19 – 21 March, 2020

RROOKH

Outline

- Overview: Small-Strip Thin Gap Chambers (sTGC)
- Forward Tracking System in STAR with sTGCs
- Prototype Testing @ BNL
- Module production at Shandong University
- Performance tests of full sTGC
- Integration in STAR & Gas system
- Summary & Conclusions

Overview: Small-Strip Thin Gap Chambers

sTGC Detector BROOKHAVEN ication

- Double-sided:
 - X & Y strips provided by one layer
 - Diagonal strips on other layer
- Pentagonal shape:
 - Rotational symmetry
 - One "disk" = 4 identical modules
- 22,000 readout channels in total
- STAR sTGCs are much smaller than ATLAS sTGCs
- Expected Position Resolution: < 100 μ m
 - Resolution depends on perpendicular angle of incidence

Overview: Small-Strip Thin Gap Chambers

sTGC Detector Specification

- Double-sided:
 - X & Y strips provided by one layer
 - Diagonal strips on other layer
- Pentagonal shape:
 - Rotational symmetry
 - One "disk" = 4 identical modules
- 22,000 readout channels in total
- STAR sTGCs are much smaller than ATLAS sTGCs
- Expected Position Resolution: < 100 μ m
 - Resolution depends on perpendicular angle of incidence

Pentagonal sTGC disks in STAR

- View of final sTGCs in STAR endcap region
- Shown with final pentagonal design
- Detectors provide large coverage in a compact space

Electronics for sTGC

- Based on ATLAS VMM chips
- 4 chips per board, 96 FEE boards in total, 16 ROD boards

Front-End Board Layout

- FEB schematics finalized
- Design of ROD schematics and layout are ongoing
- Designed to work with STAR data acquisition system
- Good timing (~15 ns)
- High rate (>100 kHz/cm^2)

STAR Forward Tracking System

https://drupal.star.bnl.gov/STAR/system/files/ForwardUpgrade.Nov .2018.Review 0.doc

- Covers the forward region (2.5 < η < 4)
- Combination of two detector technologies:
 - Three Silicon detectors closest to interaction point
 - Four sTGC modules 200 400 cm from interaction point
- Significantly reduced cost compared to all silicon

Performance requirements for physics goals

	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

Forward Rapidity Physics at STAR

Unique program addressing several fundamental questions in QCD

Essential to RHIC cold & hot QCD physics mission + fully realize scientific promise of future Electron Ion Collider

Mid-rapidity -1.5 <n<1.5< th=""><th colspan="2">Forward-rapidity 2.5<η<4</th></n<1.5<>	Forward-rapidity 2.5<η<4	
	Beam: Full Energy (200 GeV) Au+Au Physics Topics: • Temperature dependence of viscosity through flow harmonics up to η~4 • Longitudinal decorrelation up to η~4 • Clabel Lemb de Delemination	P+A, p+p P+A, p+p Beam: 500 GeV: p+p 200 GeV: p+p and p+A Physics Topics: • TMD measurements at high × transversity → tensor charge • Improve statistical precision for Sivers through Drell-Yan
	 Global Lambda Polarization Test for strong rapidity dependence 	 Δg(x,Q2) at low x through Di-jets Gluon PDFs for nuclei R_{pA} for direct photons & DY Test of Saturation predictions through di-hadrons, γ-Jets

Prototype Tests I : BNL Clean Room Tests

30x30 cm sTGC prototype

sTGC Detector

- 30x30 cm prototype delivered to BNL in January 2019
- Module tested in test-stand using cosmic rays + scintillator pads for trigger
- Tested gas flow systems with C10 (90% argon + 10% CO2)

Prototype Tests II : In-beam @ STAR

- Prototype sTGC Detector installed @ STAR
- \odot Installed in STAR on June 5th, 2019
- \odot 30x30 cm prototype module
- \odot Test in STAR data acquisition system.
- Tested with C10 (90% argon + 10% CO2)
- \odot Collected data from Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 9.2 and 200 GeV
- Performed voltage scans to test efficiency and gas response
- Performance with C10 gas was not optimal -> need n-Pentane gas mix

sTGC Production Procedure

- Shandong University has developed significant expertise
 - Production of ATLAS and STAR sTGC detectors

Polishing

• sTGC Production and QA Procedures in place

Ready to be bonded to the PPPCB half to build a chamber

Prototype Tests III : @ SDU

Full size (60x60 cm) prototype built at Shandong University using 30x30cm square module design

Performance Test @ SDU

• Gas : 45% n-Pentane + 55% CO2

• HV: 2700V

Optimal gas for sTGC: n-Pentane + CO2

Gas System for n-Pentane

- Optimal performance requires 45% n-Pentane + 55% CO2
- Gas System will comprise of the following:
 - Gas and liquid Storage CO2 and n-C5H12 bottles and containers.
 - Gas Mixing System
 - Liquid Detection System
 - Gas Delivery to the detector
 - Purging System
- Safety and interlock requirements are fully established
- Plan for testing and commissioning in STAR Run 2020
- Significant work developing gas system – can be reused for EIC detector

Summary and Conclusions

- Small-Strip Thin Gap Chambers detector technology:
 - <u>Cost effective</u> technology for large area tracking detector
 - Provide good space point resolution of $\sim 100 \mu m$
 - High rate (100 kHz/cm²)
- The STAR Forward tracking system (including silicon and sTGCs)
 - Meet or surpass requirements for physics goals in p+p, p+A, A+A
 - Momentum resolution better than 30% (for p_T < ~5 GeV/c)
 - Will be commissioned and run in STAR Fall 2021+
- Use of sTGC technology for EIC endcap detectors
 - Potential to benefit from significant developments from ATLAS & STAR
 - Design & Production expertise at Shandong University
 - Reuse of integration expertise & gas system design for n-Pentane